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ABSTRACT
Failure to accurately measure the outcomes of an experiment can

lead to bias and incorrect conclusions. Online controlled experi-

ments (aka AB tests) are increasingly being used to make decisions

to improve websites as well as mobile and desktop applications. We

argue that loss of telemetry data (during upload or post-processing)

can skew the results of experiments, leading to loss of statistical

power and inaccurate or erroneous conclusions. By systematically

investigating the causes of telemetry loss, we argue that it is not

practical to entirely eliminate it. Consequently, experimentation

systems need to be robust to its effects. Furthermore, we note that it

is nontrivial to measure the absolute level of telemetry loss in an ex-

perimentation system. In this paper, we take a top-down approach

towards solving this problem. We motivate the impact of loss quali-

tatively using experiments in real applications deployed at scale,

and formalize the problem by presenting a theoretical breakdown

of the bias introduced by loss. Based on this foundation, we present

a general framework for quantitatively evaluating the impact of

telemetry loss, and present two solutions to measure the absolute

levels of loss. This framework is used by well-known applications

at Microsoft, with millions of users and billions of sessions. These

general principles can be adopted by any application to improve

the overall trustworthiness of experimentation and data-driven

decision making.
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1 INTRODUCTION
AB testing has helped organizations evaluate new ideas, tune pa-

rameters, catch critical bugs, predict infrastructure needs, measure

customer value, and help with team planning [6, 14, 22]. In the

simplest controlled experiment, users are randomly assigned to

one of two variants: control (A) or treatment (B). Typically, the

control is the existing system, and the treatment is the existing

system with a new feature X. If the experiment was designed and

executed correctly, the only difference between the two variants

is X, establishing a causal relationship between the change made

to the product and changes in user experience. The ability to de-

rive this causal relationship is a key reason for widespread use

of controlled experiments. For example, online experimentation

helped Bing identify dozens of revenue-related changes to make

each month, collectively increasing revenue per search by 10-25%

each year [13].

Although online experimentation is well known in web services,

it is also used in mobile and desktop applications [4, 23]. Experimen-

tation is especially useful for mobile apps, since they are used by a

diverse set of devices and in a wide variety of network conditions.

Such heterogeneity cannot be fully reproduced in a lab, limiting the

extent to which applications can be tested internally. We refer to

such experimentation scenarios as client experiments, to distinguish
them from experiments that purely impact server-side behavior.

One important aspect of client experiments is that the telemetry

data collection is done over the Internet, with clients uploading

experiment data to cloud services. This introduces several possible

sources of failure, with telemetry data potentially being delayed,

lost, or collected at different rates among variants (e.g., due to

bandwidth limitations or software bugs). Moreover, since incoming

telemetry data are typically processed in complex data pipelines,

there are further opportunities for bugs to be introduced, result-

ing in missing experiment data; note that all online experiments

are susceptible to this risk, not just client experiments. The key

observation is that when telemetry loss is not uniform at random,

experiments can be exposed to major population bias, increasing

the risk of incorrect conclusions.
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To help illustrate the direct impact of telemetry loss on experi-

mentation, we will use an example from one of our recent exper-

iments. This experiment (which we will refer to as the ui-change
experiment) involved evaluating the impact of a change to the user

interface used to survey user satisfaction in Skype, one of our com-

munication products. After collecting data from the experiment, we

found a surprisingly large improvement of 8% in user ratings. How-

ever, further investigation revealed a software bug, where clients

in the treatment group failed to submit poor ratings, resulting in

a 13% difference in telemetry loss compared to the control group.

After fixing the issue and repeating the experiment, we found no

statistical difference between the interfaces.

In the previous example, telemetry loss was fairly easy to detect;

however, there are also more subtle cases, where the impact may

not be so obvious. For example, in cases where the treatment has

different effects across the overall population, this can combine

with non-uniform telemetry loss across the population to obscure

the results of the experiment. Specifically, telemetry loss can result

in under-representation of substantial segments of the population

where the treatment has effects, leading an experimenter to incor-

rectly conclude that there is no overall difference. An analogy to

this situation can be found in political polling, where polling firms

might under-sample certain segments of the voting population; by

surveying a non-representative subset of the electorate, they miss

important shifts in voting intention and therefore make incorrect

predictions about election results [1, 10].

Our experiences clearly demonstrate the importance of reducing

telemetry loss; however, eliminating this loss completely (although

desirable) is not a realistic goal for large-scale client applications.

This demands a robust methodology to ensure the trustworthiness

of experimentation and data-driven decisions made in the pres-

ence of such losses. In this paper, we describe the methodology

and tools developed at Microsoft to achieve this goal. Considering

that the impact of such loss is amplified in client experiments, we

use specific in-depth examples from two widely used applications;

Skype, a popular communication application, and OneNote, a widely
used application for free-form note taking and collaboration. Note,

however, that the proposed solutions are generic and can be applied

to any online experimentation system (client- or server-based). To

the best of our knowledge, our work is the first to address teleme-

try loss in online experimentation. The main contributions of this

paper are as follows:

• A taxonomy of telemetry loss scenarios and best practices to

minimize the loss.

• Examples of real experiments conducted at our organization

illustrating the biases introduced by data loss.

• A theoretical breakdown of biases caused by data loss and their

properties in practice.

• A methodology to simulate experiment results under no loss.

• A framework to estimate how much data loss can be tolerated

by the experimentation system for trustworthy operation.

• Two methods for measuring data loss and clear guidance on their

application.

The rest of the paper is organized as follows: Section 2 provides

detailed background and related work. Section 3 outlines a system-

atic framework for characterizing loss and estimating the level that

can be tolerated by an experimentation system. Section 4 describes

and evaluates two novel approaches for measuring telemetry loss,

and recommends ways to reduce it. Section 5 shares some practi-

cal lessons for the benefit of the experimentation community, and

Section 6 summarizes the paper and discusses future work.

2 BACKGROUND
2.1 Related Work
Online controlled experimentation is an active research area, fo-

cused on topics such as running controlled experiments in practical

settings [5, 11, 12], and new statistical methods to improve metric

sensitivity [3]. For an in-depth introduction to online controlled

experiments, see [4, 19]. These studies provide context for our work,

sharing algorithms, methods, and lessons learned from running real

experiments in practice. Specifically, telemetry loss was listed as a

common reason for misinterpreting the results of experiments [5].

A common technique to measure packet loss in the Internet is

through the use of sequence numbers (e.g., in the RTP protocol [18]).

The sequence number is incremented for each data packet sent,

allowing the receiver to detect packets that do not arrive. We apply

a similar approach (referred to as the sequence method) to mea-

sure data loss, which we describe in Section 4.2. The challenges in

mirroring data between unreliable endpoints have been studied in

detail by the database community [7, 21]. While telemetry gathered

from our apps do not require transaction guarantees, mobile envi-

ronments have constraints in terms of network reliability and local

storage. Moreover, most analysis systems do not tolerate delays of

more than a day. Nevertheless, client apps can borrow ideas such

as lazy replication to improve telemetry reliability, especially if the

experimentation and analysis system can tolerate longer delays.

Although telemetry data loss is recognized as an important prob-

lem, there is little prior research discussing data loss in the context

of online experiments. A similar problem of missing treatment val-

ues in behavioral randomized experiments is discussed in [16]. This

method assumes no data loss for outcome variables but possible

loss of received treatment indicators. Our study focuses on the

situation where outcome variables and possibly covariates are lost

but the treatment assignment is known. A methodology to identify

treatment effects under data loss for categorical outcome metrics in

the context of voting experiments is described in [8]. This study is

relevant to our work, and captures one of the biases characterized

in this paper; however, we formalize the different types of biases

induced by data loss, and provide a general framework to establish

a tolerance threshold for AB test systems operating at scale.

2.2 Overview of client telemetry loss
The processing of client telemetry data collected from apps is a

complex and tedious process. In order to highlight these complexi-

ties, we first present a high-level overview of a typical telemetry

flow. Figure 1 shows the interaction between the client and server

components and the telemetry flow within an application. We refer

to each client-server interaction as a session. While we use Skype
to highlight the details of the complexities, many of the issues are

general and apply to OneNote and other client applications.

In Skype, telemetry data (referred to as events) for a call (or ses-

sion) are collected at each participating client and at the server.



Figure 1: Telemetry flow for the client and server compo-
nents in a typical application.

These events are sent to the backend store using an uploader ap-

plication. The server and backend storage are typically co-located

in the cloud so the network connection is reliable and buffering

capacity is not a constraint. The client events are cached locally and

transmitted to the backend store opportunistically by the uploader.

Once events arrive at the backend, they are combined to form a call

record (or session record) table, which is used for tracking business

metrics and experimentation analysis. Next, we will look at each

component and the sources of telemetry loss in more detail.

Telemetry Events: In an application, events are reported by a

number of internal components interacting with one another. For

instance, in Skype, the call signalling component and service teleme-

try provide information about call establishment, the audio/video

(AV) components provide telemetry about AV quality, and finally,

the UI layer reports the overall quality of experience as reported by

the user. This user rating event (previously discussed in reference

to the ui-change experiment) is not collected for every session, but

is available only for a subset of randomly selected calls, when users

are asked to rate their experience. In contrast, call setup telemetry

(henceforth, CST ) is collected for every call attempt. The CST event

is used to compute key metrics such as call establishment rate and

call duration. It is worth mentioning that every event also carries

experiment configuration information (i.e., treatment assignment

identification). This information is used to generate experiment
scorecards, lists of metric comparisons to help track the impact of

treatments on user experience, as well as metrics for experiment

and data health. Typically, each component generates one event

per session, which are cached locally and uploaded to the backend

using an uploader application. Henceforth, the details within an

event will be referred to as “measures”.

Storage and Event Uploader: Challenges faced by the telemetry

uploader application, which can result in data loss, include:

• Bandwidth heterogeneity: Clients make calls (or initiate sessions)

in a range of network conditions, including metered 2G networks.

These bandwidth constraints result in poor event transmission

reliability.

• Sharing bandwidth with the service: Sending telemetry during a

session can impact the session experience, so the telemetry sys-

tem needs to be service-aware, and back off to prioritize smooth

functioning of the app.

• App termination: Once an app has beenmoved to the background,

it can be abruptly terminated by the operating system or the user.

This prevents some state from being persisted to disk.

• Limited storage budget: Typically, the local cache is implemented

as a buffer with a limited storage budget (e.g., on low-end mobile

devices). If the telemetry queue exceeds the allocated storage,

events are dropped.

• Event prioritization: Events are prioritized to transmit the most

critical information first. Business KPIs (e.g., user ratings) are sent

first, which may cause starvation of lower priority events (e.g.,

technical metrics). Typically, only the highest priority events are

sent reliably (with re-transmission enabled) while the lower ones

are not. It is worth noting that many component-level experi-

ments rely on metrics carried by lower priority events.

As shown in Figure 1, events are collected from both client

and server, which upload events independently. This can result

in telemetry events from the same session arriving at different

times, and suffering different rates of data loss.

Event Joins: Once events are uploaded to the backend system,

they are joined together to form the call record (or session record)

that powers experimentation analysis. Typically, the join key is

{session_id, endpoint_id}. Since the events are uploaded separately,
we may receive some events, while others may fail or suffer delays.

If a component fails to record endpoint_id or session_id correctly

due to software bugs, those events will be dropped downstream

due to the join failure. In the Skype scenario, each call has a unique

ID and the join key is {call_id, endpoint_id}

2.3 Biases caused by telemetry loss
In this section, we describe real experiments in Skype and OneNote,
illustrating different types of bias caused by telemetry loss. These

experiments were run at scale having more than a million observa-

tions in each variant.

OneNote First-RunExperience -Differing loss rateswithin
segment: This experiment tested the number of swipe screens

after the installation of the app (referred to as the “first-run ex-

perience”). The control experience showed the user three swipe

screens, while the treatment only showed one. The hypothesis was

that three swipe screens was too many for some users, and that

reducing it to one would yield higher engagement with the app. The

AB scorecard for the first-run population showed a statistically sig-

nificant difference in the number of users in treatment and control,

a phenomenon known as sample ratio mismatch (SRM) [5]. The

SRM was found to be around 4%, with more users in the treatment

compared to the control. Furthermore, within the population of

users running the app for the first time, the scorecard suggested

that the users in the treatment group had lower engagement. The

overall scorecard computed on the entire population, on the other

hand, did not show an SRM, showing instead that users in the

treatment group had higher engagement with the app. The SRM

in the first-run scorecard was caused due to a bug in the control

group, resulting in a failure to submit telemetry in cases where



users abandoned the first-run screen. In this case, telemetry loss

led to a biased estimate of the engagement metric in the scorecard.

After the bug was detected and fixed, the experiment was repeated,

showing no improvement in either the overall population or the

first-run population.

Skype Video Bandwidth - Differing loss rates among vari-
ants: This experiment aimed to improve video quality in low band-

width conditions. It had four treatments, each testing a different

setting. We found that treatment groups with a lower bandwidth

threshold were exposed to higher data loss rates due to more chal-

lenging conditions. The data loss rate in each setting was found

to be statistically different; the difference in data loss between the

variants with the highest and lowest loss rates was 0.7%. In this

experiment, the data loss of the event carrying the outcome metric

was directly correlated with the treatment itself, (i.e., the treat-

ment has an impact on the data loss rate). The unbalanced loss

rates between treatment and control variants resulted in a biased

comparison, ultimately invalidating the results of the experiment.

Skype VideoDecoder -High absolute loss rates across vari-
ants: This experiment focused on improving video quality for mo-

bile clients. Initial analysis did not show any significant difference

between control and treatment, and there were no apparent prob-

lems with data quality. However, further investigation showed that

the video telemetry had a loss rate over 10%, since the video teleme-

try event had a lower priority (as discussed in Section 2.2), and

suffered the highest loss rates compared to other client events.

Since none of the outcome metrics had changed between treat-

ment and control, it was unclear whether “no change” was due to

telemetry loss or truly due to the treatment having no impact. From

this experiment, we learned that, even when the loss rate between

control and treatment is balanced, a very high overall loss rate can

lead to massive bias in outcome metrics, masking the true impact

of the treatment on user experience. In such cases, the scorecards

show an incomplete picture about the effect of the treatment, and

can lead to inaccurate conclusions. This topic will be discussed in

more detail in Section 3.

Skype Headset Impact - Unable to construct segments: In

this experiment, we were interested in improving the audio experi-

ence of users using headsets. The outcome metric was the average

user rating, which comes from a reliable event with low loss rate.

However, for each variant, we also needed to identify whether a

headset was used during the call, which relies on device usage in-

formation reported from a low priority event with high loss rate.

As a consequence, analysis of this experiment was biased due to

the loss of the information needed to identify the sub-populations

of interest.

The examples and scenarios presented above are representative

of client experiments. As a result, it is critical to consider telemetry

loss of events at the design phase of the experiment. Our approach

was to look at this problem in a top-down fashion. We first begin

by evaluating the impact of loss on experimentation to understand

how much loss can be tolerated. Then, we address the challenge of

measuring the absolute level of loss for each event to assess how

far we are from our desired loss target. As mentioned before, our

solutions are general and apply to any experimentation system;

we use the context of Skype to convey these ideas more concretely

since this app is used in challenging environments.

3 EXPERIMENTATION UNDER DATA LOSS
The presence of telemetry loss in experimentation data raises some

natural questions. In particular,

(1) How different would the current experiment results be if there

was no telemetry loss?

(2) How much telemetry loss can our experimentation system tol-

erate, while still providing trustworthy results?

Addressing the first question is crucial to ensure the correctness of

decisions made by experiments impacted by telemetry loss. By an-

swering the second question, we can determine a practical goal for

improving telemetry loss. To quantify the impact of telemetry loss,

we develop a model to formulate the biases caused by loss on AB

test results and explore its practical implications. Then, we present

a practical algorithm to simulate the results of an experiment under

no telemetry loss. Finally, present a general algorithm to estimate a

threshold for telemetry loss that can be tolerated in a trustworthy

experimentation system. This algorithm can be adapted and tuned

for different experimentation platforms with variable sensitivity to

telemetry loss.

3.1 Statistical Model for Data Loss Impact
The change in user experience caused by the treatment is commonly

referred to as “treatment effect” in AB testing. Without loss of

generality, we describe the mathematical models in this section for

a simple AB test with two variants: control and treatment. Following

the linear model framework for randomized experiment [17], if no

blocking variable is present, then treatment effect (βT ) is modeled

as the difference in expected outcome variable Y conditioned on

treatment T (an indicator variable representing treatment):

Y = β0 + βTT + ε (1)

βT = E(Y |T = 1) − E(Y |T = 0) (2)

assuming ε has mean 0 and finite variance σ 2
.

In this framework, β0 = E(Y |T = 0) represents the baseline

or current average of the outcome metric while βT measures its

expected change if treatment is applied to all population. Under

fairly general assumptions, the difference between the averages of

Y in treatment and control,

∆ = Ȳ1 − Ȳ0 (3)

is an unbiased estimator of βT and its normalized value
∆

se(∆) offers

asymptotic unbiased significance tests. This is widely used in online

and client experimentation as a reliable decisionmakingmechanism.

However, this solution is no longer adequate in the presence of

telemetry loss, where model (1) needs to be extended by a new

term to capture the loss. Let L ∼ Bin(pT ,X ) be 1 whenever outcome

variable Y is lost and 0 otherwise. Then model (1) under data loss

extends to:

Y = β0 + βTT + βLL + βintT × L + ε (4)

According to (4), E(Y |T=1) = β0+βT +βLE(L|T=1)+βintE(L|T=1)

and E(Y |T=0) = β0 + βLE(L|T=0)). Therefore,

E(∆) = βT + bias(∆);where

bias(∆) = βL × [E(L|T=1) − E(L|T=0)] + βintE(L|T=1) (5)



The two additive terms in (5) are the two types of biases with very

different characteristics in practice: correlation bias and interaction
bias.

Correlation Bias (corr-bias): βL × (E(L|T = 1) − E(L|T = 0)),

measures the correlation between data loss and treatment. This is

non-zero when the treatment changes the behavior of the app in

sending telemetry, or causes an indirect change in the loss distri-

bution. For example, the Video Bandwidth experiment described in

Section 2.3 exhibits corr-bias.

Interaction Bias (int-bias): βintE(L|T = 1), measures the in-

teraction between treatment effect and data loss. This occurs when

the treatment effect is expected to be different under L = 1 and

L = 0. For example, the Video Decoder experiment described in

Section 2.3 exhibits int-bias.

Under the missing at random (MAR) assumption, L is indepen-

dent of T and Y ; i.e., E(L|T=1) = E(L|T=0) and βint = 0. Hence,

both bias terms would be zero and observed delta in Formula (3)

still provides an unbiased estimator of true impact. The only cost

of telemetry loss in this case is reduced sample power. In practice,

however, we observed that telemetry loss, even when occurring at

the same rate for treatment and control group, is not independent

of the outcome variable or treatment itself.

In the Video Bandwidth experiment, more challenging bandwidth

conditions led to a higher loss rate. This resulted in a positive

correlation between data loss and treatment, for video metrics.

Since the data loss is not at random and is more concentrated on

poor user experiences (i.e., low bandwidth is closely related to poor

user experience [9]), there was no way to separate the impact of

treatment from the inherent differences in samples. Therefore, the

video metrics reported in our scorecards were inconclusive.

Correlation bias manifests itself as statistically different loss rates

between treatment and control samples, so it is fairly easy to detect.

However, there is no easy way to recover from it, since changes

in the outcome metrics could be attributed to either the treatment

change or the telemetry loss. If the correlation bias is a result of

a bug, such as in ui-change example, the solution is to fix the bug

and run the experiment again. However, if the correlation bias is

because of the nature of treatment, such as in Video Bandwidth
experiment, the only option is to analyze the experiment using

other metrics that are not impacted.

In contrast, interaction bias is difficult to detect and correct for.

This hidden bias can easily mislead experimenters who observe the

same rate of telemetry loss on both treatment and control side and

conclude there is no obstacle to analyzing the experiment data.

3.2 Challenges in Correcting Data Loss Bias
Covariate post-stratification is a common statistical technique to

adjust estimates of an outcome variable by re-weighting [15]. This

method is especially beneficial in handling data loss if there is a

random variableX that is strongly correlated with loss, and the true

distribution of X is observed. This adjustment can be achieved by

dividing the population into strata with known weights, imputting

the lost values using the correlated feature, and finally re-computing

the outcome metric using the strata weights.

In practice, applying this method is problematic and finding a

reasonable covariate is non-trivial. In Skype, when data loss occurs

Algorithm 1 Simulate Overall Treatment Effect

Input: [ȳ′′ctr l , s
′′
ctr l , βint ], [ȳ

′
ctr l , s

′
ctr l , s

′
tr t , ȳ

′
tr t ], [lctr l , ltr t ]

Output: overall treatment effect under no loss:
∆

se(∆)
1: Estimate sample mean for lost data points according to (9)

2: Estimate overall delta:

∆ = (1 − lctr l , 1 − ltr t ) ×

(
ȳ′ctr l
ȳ′tr t

)
+ (lA, lB ) ×

(
ȳ′′ctr l
ȳ′′tr t

)
3: Calculate overall variances s2

tr t and s
2

ctr l according to (8)

4: Calculate overall treatment effect
∆

se(∆) where se(∆) represents

the standard deviation of delta

due to extreme network conditions, obtaining accurate network

estimates is challenging, and therefore correlated covariates are

not easily available. Moreover, data loss is a nonlinear function of

multiple variables, as discussed in Section 2.2. Another limitation

of this method is faced when one or more strata are completely lost,

such as application crashes which lead to 100% data loss. In such

cases, knowledge of loss rates does not help to correct for the bias.

In the absence of suitable covariates, we have developed solutions

to estimate boundaries of data loss bias instead of correcting for it.

3.3 Estimating Boundaries of Data Loss Bias
In this section, we address how the results of experiments would be

different if telemetry was not lost. Simulation is a powerful tool for

this, since it does not require external data or covariates correlated

with loss L. Beyond observed summary statistics, we need only the

measured loss rates for each sample and a range of scenarios.
A scenario characterizes an intuition about the lost data points,

such as “lost events are correlated with poor user experience, but

the experience is improved by the treatment” or “lost events are

correlated with poor user experience, and the treatment degrades

the experience even further”. The idea is to impute the lost data

points under certain scenarios and then reconstruct the overall

treatment effect. This can be done by decomposing the mean and

standard deviation of a complete sample (ȳ, s) into observed and

unobserved pieces. We use (ȳ′, s ′) and (ȳ′′, s ′′) to refer to the sum-

mary statistics of observed and lost parts, respectively. Here is the

breakdown for overall sample mean ȳ and variance s2
:

ȳ = (1 − l)ȳ′ + lȳ′′,and (6)

s2 =
1

n

∑
i
(yi − ȳ)

2

=
1

n
[
∑
i ∈obs

(yi − ȳ)
2 +

∑
i ∈lost

(yi − ȳ)
2]

=
1

n
[
∑
i ∈obs

(yi − ȳ ± ȳ
′)2 +

∑
i ∈lost

(yi − ȳ ± ȳ
′′)2]

= (1 − l)s ′2 + ls ′′2 + (1 − l)(ȳ′ − ȳ)2 + l(ȳ′′ − ȳ)2 (7)

where l = n′
n is the sample loss rate. By replacing ȳ according to

(6), equation (7) simplifies to:

s2 = (1 − l)s ′2 + ls ′′2 + l(1 − l)(ȳ′ − ȳ′′)2 (8)

This breakdown holds for both treatment and control samples. We

will refer to them by trt and ctrl suffixes.



Each scenario must specify three unknown parameters: ȳ′′ctr l ,

s ′′ctr l and βint . The first two parameters are our hypothesis about

the status of lost data points, regardless of experimentation. For

all simulations, we estimated these summary statistics from the

bottom 10th percentile of quality metric distributions. This choice

was motivated by our observation that most data loss is associated

with poor experiences. βint represents our assumption about the

impact of the treatment on lost data. This is established on a per-case

basis for each experiment, using domain knowledge obtained from

lab or offline results. Large absolute values for βint are indicative of
experiments with high sensitivity to data loss. Setting βint to zero

implies there is no difference in treatment effect on unobserved

and observed samples, hence there is zero sensitivity to data loss.

Assuming that treatment may only change the metric baseline

and not its variance, i.e. s ′′ctr l = s ′′tr t the three input parameters

specified by a scenario are sufficient to reconstruct the overall

treatment effect. Using model (4), ȳ′′ can be estimated by:

ȳ′′tr t = ȳ
′′
ctr l + δ

′ + βint (9)

under scenario [ȳ′′ctr l , s
′′
ctr l , βint ] where δ

′ = ȳ′tr t − ȳ
′
ctr l is the

observed delta. The simulation process is a simple application of

(6), (8) and (9), as described in Algorithm 1.

If needed, the equal variance assumption can be simply relaxed

by adding s ′′tr t an extra input parameter to Algorithm 1 and applying

it when calculating se(∆). This parameter can be initiated using

historical values from previous experiments. We continue with

equal variance assumption since it is verified for our application.

The result of applying Algorithm 1 is a new scorecard with

simulated values under no loss. If there is a large difference between

the simulated and observed scorecards, this implies that the data

collected from the experiment are inconclusive. On the other hand,

the observed scorecard is deemed to be trustworthy enough if it is

not practically different from the simulated scorecards.

Table 1 shows an example of the output of Algorithm 1, for

the Video Decoder experiment under two different scenarios, along

with observed statistics for a few metrics. The experiment data used

for this simulation include approximately 30 million observations

for each variant. As discussed in Section 2.3, the video telemetry

in this experiment had over 10% loss. According to the observed

scorecards, none of the metrics showed significant change. The

video-related metrics (shown in italic) are calculated using high

loss rate events, while the others are based on low loss rate events.

As expected, the latter set of metrics are the same in observed

and simulated scorecards. However, the video related metrics show

wildly different results. Under the worst-case scenario (βint = 5%),

overall VideoFreezeDuration shows a 2.43% increase, while under

the best-case scenario (βint = −5%) it shows a 2.47% decrease.

This indicates a large confidence interval for true effect, that spans

over a diverse set of conclusions from “treatment improves user

experience” to “treatment degrades user experience”. In such cases,

we flag the experiment as inconclusive.

3.4 Data Loss Tolerance in Experimentation
Applying Algorithm 1 to various Skype experiments showed how

much the actual treatment effect could be different from observed

scorecards. However, this difference only matters if it is large

enough to impact our decision. Often, decisions informed by AB

Relative Delta (P.Value)

Metric Observed Best-case Worst-case
DurationMean -0.02% (0.76) -0.02% (0.76) -0.02% (0.76)

CallEstablishRate -0.04% (0.30) -0.04% (0.30) -0.04% (0.32)

VideoDuration 0.02% (0.78) 0.11% (0.31) 0.09% (0.40)

VideoFreezeDuration -0.03% (0.76) -2.47% (0.00) 2.43% (0.00)

VideoBitrateMean -0.04% (0.78) -0.54% (0.00) -0.68% (0.00)

Table 1: Sample Experiment Scorecard - Video Decoder

Algorithm 2 Detect Loss Tolerance

Input:
−→
l ,
−→
δ ′′, significance level

Output: low decision impact areas

1: for all (l ,δ ′′) pairs do
2: Set input parameters of Algorithm 1 by ltr t = lctr l = l and

βint = δ ′′

3: Run Algorithm 1 to generate
δ

se(δ )
4: Generate p-value p using standard normal distribution

5: end for
6: Flag

−→
l ⊗
−→
δ ′′ where p-values is greater than significance level

as safe zone

tests are binary functions with two outcomes: “roll-out” or “no

roll-out”. We call the data loss tolerable if it does not reverse our
decisions. In this section, we discuss how to find the maximum

tolerable data loss rate, which we refer to as the tolerance threshold.
Note that tolerance threshold is irrelevant when correlation bias

exists, since there is no tolerance for significantly different loss

rates between treatment and control, as this leads to incomparable

samples. The solution provided in this section is used to find the

data loss threshold where treatment and control have a statistically

comparable level of loss (i.e., l = lctr l = ltr t ).
The decisions made by experimentation are tightly bound to

the p-values of outcome metrics provided by scorecards. A “roll-

out/no roll-out” decision usually translates to the p-values of desired

metrics being lower/higher than significance level
1
. Leveraging the

binary nature of experiment decision process, we approached this

problem by comparing observed p-values with simulated p-values

for complete samples (no data loss). If both are on the same side

of the significance level, data loss is tolerable for that experiment.

Without loss of generality, we set δ ′ = ȳ′tr t − ȳ
′
ctr l = 0. This way,

the observed p-value is higher than the significance threshold and

we just need to track the simulated p-values.

To find a threshold that is tolerable for most experiments in a

given experimentation platform, we need to run Algorithm 1 re-

peatedly for multiple loss rates

−→
l , and under different scenarios

[ȳ′′ctr l , s
′′
ctr l , βint ]. The input parameters of Algorithm 1 must be

adjusted to reflect the target population, the nature of data loss, and

the sensitivity of experiments running on that platform. That is, to

fix [ȳ′ctr l , s
′
ctr l , s

′
tr t , ȳ

′
tr t ] to the known summary statistics of the

target population and to estimate ȳ′′ctr l , s
′′
ctr l according to assump-

tions about the overall user experience under lossy conditions.

1
The significance level can be different for each organization depending the number

of metrics they consider for experimentation and accepted level of false positive rate.

A popular significance level for pairwise comparison on single metric is 0.05.
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Figure 2: Loss Tolerance plot for Video Duration on a low-
end mobile platform (a); and Mean User Rating on a high-
end mobile platform (b).

Therefore, most input parameters in Algorithm 1 are constant

values reflecting the specifications of the experimentation platform,

while βint varies over a possible range of values that represent

different sensitivity levels for experiments run in the platform.

Since δ ′ is set to zero, βint = ȳ′′tr t − ȳ′′ctr l = δ ′′ according to

formula (9). We use δ ′′ instead of βint for this simulation because it

is easier to interpret for engineering teams, whose input is required

for defining the range of βint .
With the above settings, Algorithm 1 can be used to generate a 3-

dimensional array of [
−→
l ,
−→
δ ′′,−→p ] where p is the simulated p-value

for a complete sample based on given loss rate and experiment

sensitivity level.

Discussion on setting input parameters: Prior knowledge about
the nature of data loss plays an important role in setting these pa-

rameters. In Skype, we found that the causes of data loss are related
to poor experience. A conservative choice is to set values drawn

from the poor experience population (i.e., simulating ȳ′ctr l , s
′
ctr l

from the lower tail of outcomemetric distribution). Choosing values

closer to the distribution center leads to a higher tolerance com-

patible with the MAR assumption. It is also important to capture

a realistic range for δ ′′ = ȳ′′tr t − ȳ
′′
ctr l based on prior lab tests and

metric noise levels. In the absence of such knowledge, (0, 2 × S)
where S is metric standard deviation, is a reasonable range.

Application to Skype Experimentation: At Skype, we applied
Algorithm 2 to various segments of the target population defined by

device platforms (e.g., Android, Windows) due to the heterogeneity

of metric noise levels and baselines across different platforms. The

following provides further detail on the input parameters:

(1) The summary statistics of lost data points in control group are

set to the lower 10th percentile of the respective metrics

(2)

−→
l ranges from 0 to 20% to cover all possible loss rates

(3)

−→
δ ′′ ranges from 0 to the minimum of 30% of metric average and

50% of its standard deviation

(4) The significance level is set to 0.01

As shown in Figure 2, higher loss rates increase the chance of

decisions being reversed. However, the rate of increments varies

by metric and platform. Average User Rating on a high-end mobile

platform, for example, has higher sensitivity to data loss compared

Algorithm 3 Data loss estimation using the anchor method.

1: procedure AnchorMethod(server _events_set, client_events_set )
2: events_lost = 0

3: expected_events = Count(server _events_set )

4: for all leд_id ∈ server _events_set do
5: if Not(HasKey(client_events_set, leд_id )) then
6: events_lost ← events_lost + 1

7: end if
8: end for

9: anchor _loss_rate ← events_lost
expected_events

10: return anchor _loss_rate
11: end procedure

to Video Duration on a mobile low-end platform. This is shown as

larger safe zone (green area) for data loss on Video Duration.

These two examples show how variable the tolerance could be

depending on experiments’ sensitivity to loss. Experiments that are

designed to enhance user experience in poor network conditions,

for example, may fall in the top area in these plots and have lower

tolerance for data loss. In practice, there is no unique non-zero

tolerance threshold that uniformly satisfies all types of experiments.

We set the overall target for data loss reduction to the threshold

value that would ensure trustworthy experiments for majority of

treatment types. According to the simulation results, 5% is the

threshold value that provides tolerable coverage and risk of false

positives/negatives for Skype.

4 MEASURING DATA LOSS
In this section, we first present two approaches to measure loss of

telemetry events. Then, we evaluate these techniques in practice,

using the results from various experiments. Finally, we provide

some recommendations on how telemetry loss can be reduced.

4.1 Anchor Method
This method relies on pairing (or anchoring) client events with a

more reliable server event. Call establishment in Skype is negoti-
ated using a server. Therefore, for every call (uniquely identified

by call_id), a record of the call’s technical telemetry and the partic-

ipating legs is reported by the server. Server machines are reliable,

not bandwidth-constrained, and therefore exhibit near-zero teleme-

try loss. The unreliable client events can therefore be paired with

the highly reliable server events to get an estimate of the loss

in client telemetry. Each leg of the call is uniquely identified by

leд_id = (call_id, endpoint_id)
The anchor method is shown in Figure 3 and Algorithm 3. Figure

3 shows the table of events reported by the client and server, where

each row corresponds to a call. Note that the figure only shows one

leg of the call. For each of these call legs, the server also logs the leg

IDs, allowing the client and server leg events to be paired. In this

example, measures of event CF < e1, c2 > could not be uploaded

and this constitutes a loss.

Note that the anchor method is limited to scenarios where both

client and server events are submitted. For example, loss can be

measured only for call attempts where the request/acknowledgment

reached the server. Therefore, this method can be applied to all

established calls but not all attempted calls.



Figure 3: The Anchor method to estimate data loss.

4.2 Sequence Method
The sequence method (Algorithm 4) is a more general solution

compared to the anchor method, using a monotonically increasing

counter that is persisted to the client’s local storage. This counter is

referred to as a sequence number (sn). Each event has an associated

counter per endpoint to track the number of events that have been

generated. This monotonically increasing set is referred to as a

sequence, as shown in Figure 4. At the beginning of each call, the

sn value for each event is incremented and reported as part of the

event. After the telemetry uploader transmits the client events, the

associated sn values can be reconstructed. If there is no loss in

events, there should be no gaps in the sn values when considered

in sorted order; a gap in sn indicates that a client event has been

lost, with the size of the gap indicating the number of lost events.

Algorithm 4 shows how to compute the sequence loss for a batch

of de-duplicated events. In practice, in a live system, the backend

system needs to maintain a lookup table of the sequence informa-

tion. Specifically, the lookup table needs to maintain the following

counters: 1) last received sequence number, prev_sn; 2) the cumu-

lative loss so far, sequence_дap; and 3) the size of the sequence,

expected_sequence_size . By accumulating the sequence_дap val-

ues and expected_sequence_size values across all sequences, we

can incrementally compute the overall data loss.

The sequence method can be applied in situations where there is

no reliable server method to pair with, such as randomly sampled

events that do not have a reliable anchor (e.g., user ratings). As a

practical matter, sn values are reset when users uninstall and rein-

stall the app (common in low-end devices as users try to conserve

space by removing applications when not needed). While this is a

corner case, these resets need to be detected and handled properly.

4.3 Data Loss Measurements in Practice
We use the CST event described in Section 2.2 to show the results

of the anchor and sequence methods and discuss their practical

implications. Although we cannot report absolute numbers due to

confidentiality restrictions, we show appropriately scaled relative

values to convey the results. Since the anchor method uses server-

side events as the baseline, we compare the two methods only for

Figure 4: The Sequence method to estimate data loss.

Algorithm 4 Data loss estimation using the sequence method.

Input: MIN _SEQU ENCE_SIZE

1: procedure SeqenceMethod(sequence_l ist )
2: events_lost ← 0

3: events ← 0

4: for all sequence ∈ sequence_l ist do
5: (seq_дap, seq_size) ← SeqenceLoss(sequence)
6: events_lost ← events_lost + seq_дap
7: expected_events ← expected_events + seq_size
8: end for

9: sequence_loss_rate ← events_lost
expected_events

10: return sequence_loss_rate
11: end procedure

12: procedure SeqenceLoss(sequence )
13: expected_sequence_size ← Max(sequence) −Min(sequence) + 1

14: if expected_sequence_size < MIN _SEQU ENCE_SIZE then
15: return (0, 0)

16: end if

17: sequence_дap ← expected_sequence_size − Count(sequence)
18: return (sequence_дap, expected_sequence_size)
19: end procedure

calls that are established (i.e., the server has a record of the caller’s

attempt or callee’s response). We set the MIN_SEQUENCE_SIZE
to 5, which we will explain in further detail later. The dataset used

for the analysis consisted of more than a billion established Skype
calls over a period of several weeks. The anchor and sequence

methods were implemented using Microsoft’s big data analysis

platform [2], which has a query language is similar to Apache Hive

[20]. Our implementation is part of the production telemetry and

experimentation processing pipeline.

The loss rate of the CST client side event as estimated by the

anchor and sequence methods is shown in Figure 5a. The overall

absolute difference between the two methods is less than 0.5%. Not

surprisingly, the absolute loss is lower for desktop platforms than

mobile platforms. From our dataset, we found that the estimated

difference in loss between the two methods is less than 0.3% for

desktop platforms, and about 0.7% for mobile platforms. Due to the

large number of events, the confidence intervals of the estimates are

very small and not shown in the figure. Note that that the Sequence

method consistently estimates lower loss than the Anchor method.

The length of each sequence is a function of the number of

calls made by the endpoint during the time period used for the

study. In general, the distribution of the sequence size will vary

per application, based on the usage characteristics. Since we have
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Figure 5: (a) Estimates of data loss in the CST event using
the Anchor and Sequence methods. (b) Impact of sequence
length on sequence loss estimates for mobile platforms.

millions of users making calls at varying levels of activity, we can

study the relationship between sequence size and sequence loss.

Figure 5b shows this relationship for our mobile platforms, showing

that the estimates converge as the size of the sequence increases.

This is because the uncertainty in the loss estimate of the sequence

endpoints decreases as the sequence grows. Due to this effect, the

sequence method tends to underestimate the overall level of loss

when sequences are short. In our experience, computing sequence

loss for sequences of size greater than 5 provides a good trade-off

between coverage and accuracy.

4.4 Discussion on Data Loss Estimation
The practical tradeoffs and qualitative comparisons between the

sequence method and anchor method are shown in Table 2.

For the majority of the scenarios in VoIP calling, the anchor

method is appropriate since we have a server side event to anchor

with. Moreover, the anchor method provides better accuracy and re-

quires less state maintenance. As a consequence, the anchor method

is easier to integrate in experimentation scorecards. However, the

timescale of many of the experiments conducted in Skype last in the

order of days. At this timescale, the sequence method may not pro-

vide adequate coverage, due to a large number of sequences falling

below theMIN_SEQUENCE_SIZE threshold. In our experiments,

at least two weeks worth of data is required for sequence method to

provide adequate coverage. Nevertheless, the sequence method has

been used to measure loss rate of events where a good anchor is

not available. Even if sequence method cannot be easily integrated

in the experimentation scorecard, it can be used to establish the

overall loss rate of events, and in-turn, improve the trustworthiness

of the metrics derived from those events.

4.5 Best Practices for Reducing Data Loss
In our experiences with Skype, we have successfully improved event

reliability without impacting service quality using a system that

is service aware, with prioritized, persistent event queues. This

has helped us bring the loss to below 2% for events used in our

experimentation system. While the design of the telemetry system

is beyond the scope of this paper, we would like to share some of

the lessons we have learned on low-loss telemetry design, including

Table 2: Comparison of Anchor and Sequence methods

Topic Anchor Method Sequence Method
Dependencies Server side event re-

quired as a source of

ground truth.

Relies purely on client

side telemetry.

Sampled

events

Typically, a good an-

chor is not available.

Can be used for all

events.

Accuracy Reliable ground truth

results in high accu-

racy.

More accurate for

longer sequences.

Treatment

effect bias

Loss estimates do not

lead to biases between

control and treatment.

Loss estimates may

lead to biased

comparison due to

MIN _SEQU ENCE_SIZE

threshold.

State mainte-

nance

The approach is state-

less.

Table of sequence in-

formation needs to be

maintained for incre-

mental processing.

Integration

with exper-

imentation

scorecard

Easier to integrate

with the scorecard

due to its simplicity.

Integration with score-

card is more challeng-

ing due to the state

overhead.

how careful design of telemetry events can make the best use of

the available client resources (bandwidth, storage, etc.):

• KPI hierarchy design: Organizations need to carefully design a

system of metrics with a clear hierarchy. We recommend three

tiers. Tier-0 represent business health metrics, Tier-1 represents

leading indicators of quality/reliability, and Tier-2 represents

operational metrics of sub-components. The events should be

designed and prioritized using this map. This ensures that the

most informative events suffer the least loss. In an A/B test aimed

at evaluating the impact of prioritization for one the business-

critical KPIs, we found an absolute loss reduction of 3.8% when

the priority of the event was increased by one level.

• Split large events: Keeping the size of each event small is crit-

ical to minimize congestion. Moreover, the measures in each

event should provide information for metrics at the same tier.

For example, mixing high priority measures/metrics (e.g., user

ratings) with lower priority ones (e.g., UI selections) will cause

unnecessary loss in critical information. In a lab experiment, we

found that lowering the event size from 24 KB to 3 KB resulted

in reducing the loss from 30% to 4%.

• Review feature importance: Over the life-cycle of a product, archi-

tectural changes and bug fixes lead to changes in the usefulness

of measures. It is critical to periodically evaluate the importance

of these measures by correlating themwith a Tier-0 or Tier-1 met-

ric. Measures with limited correlation should be either removed

from the event or investigated to keep the size small.

While we cannot completely eliminate data loss, measuring its

extent and applying the above principles to minimize it are crucial

prerequisites for trustworthy experimentation.



5 PRACTICAL GUIDANCE FOR
EXPERIMENTERS

Our experiences of running experiments have taught us that the

impact of data loss can be very significant, and its importance

can be easily underestimated. Therefore, we want to share some

general guidance for the benefit of the online experimentation

community. We have followed an iterative process in improving

the trustworthiness of our experimentation system and its resilience

to telemetry loss, as described in the steps below:

(1) Measure and track data loss for relevant events by adding them

to the experimentation scorecard using the methods described

in Section 4.

(2) Estimate how much loss that can be tolerated by the experimen-

tation system using the methodology described in Section 3.3,

and exclude telemetry events that suffer higher levels of loss

from decision making.

(3) Use examples similar to Section 2.3 to communicate biases

introduced by these losses.

(4) Mitigate the impact of loss by restructuring events using rec-

ommendations outlined in Section 4.5.

(5) Investigate the source of losses for events, starting with those

with the highest loss rates.

In our experience, we found that it is critical to make the es-

timates of loss rates part of the experiment scorecard, reporting

these alongside the other metrics monitored by the experimenter.

By doing this, it becomes easier for experimenters to detect biases,

and provides an extra check for the validity of experimental results.

In our organization, we flag events that suffer a loss rates greater

than 5%, and mark metrics relying on these events as invalid. For

example, for a given experiment, suppose the loss in CST event

was higher than 5%; in this case, the call_duration metric will be

marked invalid for the purposes of analysis and conclusions.

We also find this 5% threshold useful when considering newly

added metrics, since new events often exhibit high loss rates (10%

or more). In such cases, we ask the appropriate engineering team

to find the root cause and fix bugs as needed (e.g., the ui-change
experiment discussed in Section 1), to bring the loss rate below the

allowed threshold before they can be used in any experimentation

analysis. Several teams have gone through this exercise. Their fo-

cused efforts have helped lower the levels of telemetry loss, and

improved the overall trustworthiness of our online experiments.

6 CONCLUSION
Telemetry loss is an inseparable part of online experimentation with

potentially dramatic implications. Since many apps are required to

operate under resource constraints and challenging network envi-

ronments, this problem is even more severe in client experiments.

Based on several examples observed from real experiments at scale,

we show the impact of telemetry loss on experiment outcomes.

In this paper, we argue that it is vital to measure and track the

level of loss in experimentation systems. We provide a theoretical

framework for characterizing the types of biases introduced by

telemetry loss. Using this framework, we provide a methodology

for experimenters to evaluate the amount of loss that can be tol-

erated in their systems. To measure the absolute level of loss, we

present the anchor method and sequence method: two practical

approaches that have been deployed at scale. While we note that

completely eliminating telemetry loss is not practical, we present

the community with a set of best practices to reduce loss rates and

manage the problem. These methods have already been adopted

by several applications with millions of users across billions of

sessions. Finally, we would like to emphasize that these principles

can be applied generally, to improve the trustworthiness of any

online experimentation system running at scale.
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