
An Experimental Study of Client-Side Spotify
Peering Behaviour

Martin Ellis
School of Computing Science

University of Glasgow
Email: ellis@dcs.gla.ac.uk

Stephen D. Strowes
School of Computing Science

University of Glasgow
Email: sds@dcs.gla.ac.uk

Colin Perkins
School of Computing Science

University of Glasgow
Email: csp@csperkins.org

Abstract—Spotify is a popular music-streaming service which
has seen widespread use across Europe. While Spotify’s server-
side behaviour has previously been studied, little is known about
the client-side behaviour. In this paper, we describe an experimen-
tal study where we collect packet headers for Spotify traffic over
multiple 24-hour time frames at a client host. Two distinct types
of behaviour are observed, when tracks are being downloaded,
and when the client is only serving requests from other peers.
We also note wide variation in connection lifetimes, as seen in
other studies of peer-to-peer systems. These findings are relevant
for improving Spotify itself, and for the designers of other hybrid
peer-to-peer and server-based distribution architectures.

I. INTRODUCTION

Spotify (http://www.spotify.com/) is a commercial music
streaming service that is widely used across Europe, and has
recently been rolled out in the US. It employs a hybrid data
distribution model with a combination of peer-to-peer sharing
of data and a server-side infrastructure. Although some data
on server-side Spotify traffic patterns has been published [6],
the behaviour of clients in the wild remains unstudied. This
data might be useful in finding aspects of the protocol or
application which can be improved, such as measuring the
geographic distribution of peers to see whether latencies can
be reduced, or assessing how successful the peer network is
at serving content.

In this paper, we present a preliminary study of the client-
side behaviour of the Spotify protocol; in particular, we are
interested in the peer-to-peer interactions, rather than those
between client and server. We capture packet headers, and use
the resulting traces to analyse the size of the peer set over
time, and connection lifetimes of the peers.

Our contributions are client-side measurements of Spotify’s
behaviour and initial analysis of these measurements to ex-
amine the operation of Spotify’s peer-to-peer protocol in the
wild. We investigate how often our client connects with new
peers, how long they stay connected, and how much data they
transfer. Our results show that the client’s connection-forming
behaviour is quite different when downloading new tracks,
compared to when playing from the local cache. In particular,
connection lifetimes are typically shorter when the client is in
the “fetching” state. This result is interesting since it suggests
that new connections need to be formed to obtain new tracks in
the playlist, meaning that the tracks of interest are not available
from existing peers.

Similar work has focused on other peer-to-peer systems,
such as Skype [4], [2] and PPLive [5]. However, since Spotify
uses a hybrid architecture, rather than a purely peer-to-peer
network, and since its content consists of short music tracks
rather than interactive telephony or large video files, we expect
the behaviour of the peers to be quite different.

The remainder of this paper is organised as follows. We
briefly describe the Spotify protocol and application in §II,
outline our experimental setup in §III, and present our results
in §IV. We discuss related work in §V, and conclude in §VI.

II. SPOTIFY OVERVIEW

The Spotify service is available with several levels of
membership, with a free version supported by advertisements,
as well as subscription services, and is available for Windows,
OS X, Linux, and several mobile platforms. It recently reached
ten million users, with one million of those subscribing to
the Unlimited or Premium services1. The protocol operates
entirely using TCP transport, since TCP provides reliable
transport and congestion control. Clients maintain connections
to the server and to other peers, multiplexing both data and
control traffic over these connections. The clients also use
UPnP to ask home gateways (if present) to allow incoming
TCP connections to the client. This avoids some of the
problems caused by NAT on home networks, since the Spotify
clients do not attempt explicit NAT traversal [6].

Tracks are transmitted (and cached by the clients) in an
encrypted format, and cannot be played outside Spotify. The
size of the client cache is determined by the user, defaulting to
10% of available disk space, but being at most 10GB in size.
Each time clients try to play a track, they first search their
on-disk cache to see if the track has already been downloaded
before searching for the track online.

To locate tracks, the Spotify client uses two methods. First,
the client uses a tracker at the Spotify servers, which maintains
“a list of the 20 most recent peers for each track” [6]. Second,
the client can also search using peers it is already connected
to. These peers also forward the query to their neighbours,
so that all peers within a distance of two hops of the searcher
receive the query. Peers which have cached the requested track
will send a response to the client which initiated the search.

1 http://www.spotify.com/uk/about/press/background-info/



When playing from a playlist, the client takes advantage
of “predictable track selection” to start downloading the next
track before the end of the track currently playing. When the
current track has around 30 seconds left, the client will search
for the next track on the peer network. If these searches have
not succeeded with 10 seconds remaining of the current track,
the beginning of the next track is downloaded from the server.
To allow this, all tracks are available on the Spotify servers,
which lets the service maintain low playback latency.

To reduce the state required at the client and stateful
firewalls, each client limits the size of its peer set. According
to [6], the clients are configured with “soft” and “hard” limits
of 50 and 60 connections, respectively. The client will not
make new connections above the soft limit, and the number of
connections should never go above the hard limit. To maintain
these limits, the client will periodically prune connections,
using a number of criteria to rank the current peers (including
number of bytes transferred to and from the peer, number of
successful searches passed through the peer, and number of
tracks of interest the peer has). Using these criteria, the current
peers are ranked, and the “least useful” are disconnected.

For a more in-depth discussion of the Spotify protocol
and architecture, including a description of the streaming
protocol, peer-to-peer overlay, and client design, as well as
measurements of server-side performance, refer to [6].

III. METHODOLOGY

We use a dedicated machine running Linux to play Spotify
with an Unlimited subscription. Using a separate machine
running FreeBSD 8.1 as a transparent bridge, we capture all
traffic to and from the Linux machine using tcpdump, for
offline analysis. However, since the payloads of the Spotify
traffic are encrypted, we limit our analysis to using information
in the packet headers, including source and destination IP
address and port, TCP flags, and payload size. Both these
machines are connected to the Internet using a commodity
NAT/ADSL modem, attached to a residential ADSL line.
We acknowledge that this preliminary study uses a single
observation point, which may not be representative of all
Spotify clients. However, the characteristics of the traffic we
observe between our client and the servers and to other peers
are interesting, especially since different modes of behaviour
appear to be present when the client is actively fetching data
compared to when it is playing from its local cache.

We measure the traffic exchanged when music is be-
ing played by our client. To understand the effect of con-
tent/popularity on our measurements, we use three playlists
for our measurements of data traffic:

• 100-random, which includes 100 tracks chosen using
Spotify’s radio feature, using the widest possible set of
music preferences to select tracks randomly.

• 500-rollingstone, based on Rolling Stone magazine’s
“500 greatest tracks of all time” [1]. This includes around
450 tracks, since some of the tracks were unavailable in
the UK when we conducted our experiments, probably
due to licensing issues.

• 100-rollingstone, the first 100 tracks of 500-rollingstone.
These playlists were chosen to investigate how content pop-

ularity affects the peering behaviour of our client. For each of
the playlists, we collect a 24-hour trace, starting the client with
an empty on-disk cache, so that all the tracks in the playlist are
downloaded each time. The 100-rollingstone and 100-random
playlists have around six hours of content, so will stop fetching
new content roughly one quarter of the way through the trace,
while the 500-rollingstone playlist has around 24 hours of
content, fetching new content throughout the measurement pe-
riod. Each experiment was repeated three times to mitigate the
effect of random variations, and to validate the characteristics
experienced for each playlist. The playlists are available at
http://sdstrowes.co.uk/research/spotify/.

IV. RESULTS

Since our focus is on Spotify’s peer-to-peer behaviour, and
the majority of the data we observe is transferred over the peer
network (∼99%), for the remainder of the paper we analyse
only the peer-to-peer traffic. To do this, we filter out traffic to
and from known Spotify IP ranges, and on ports 80, 443, and
4070 (which are used for communication with the server, and
with other sites as part of the client).

In our analysis of the traces, we look at how the peer set
size varies over time, and at the effect of playlist content (be-
tween 100-rollingstone and 100-random), and playlist length
(between 100-rollingstone and 500-rollingstone). We also in-
vestigate Spotify’s connection-forming behaviour, examining
the connection lifetimes, and activity over short timescales.

A. Peer set size over time

Figure 1 shows the size of the peer set over time, in both the
100-rollingstone and 500-rollingstone playlists (“outbound”
connections are initiated by our client, and “inbound” are
initiated by peers). Note that the peer set sizes roughly match
the limits described in Section II. Two states are visible within
the 100-rollingstone playlist. From the start until around 14:00,
while our client is actively fetching tracks, we note a more
variable trend in the peer set size, followed by a less variable
period. Since the 500-rollingstone playlist lasts longer (24
hours rather than six), the measurements of this playlist show
our client fetching tracks for the entire measurement period.
We note that for the 100-rollingstone playlist (and in the 100-
random playlist, not shown), some outbound connections are
still being opened by our client, even in the less variable period
after the first six hours of playing (when no new tracks are
being fetched). The reason for this behaviour is explained in
[3]; when a client attempts to connect to a peer, it also forwards
a request via the server for the peer to open a connection back
to the original client. When one of these succeeds, the other
is terminated, before any data is transferred.

B. Connection lifetimes

Since there is variation in the peer set, we next examine
connection lifetimes to gain insight into the efficiency of the
peer network. Figure 2 shows histograms of the connection



 0

 10

 20

 30

 40

 50

 60

 70

 80

08:00 12:00 16:00 20:00 00:00 04:00 08:00

S
iz

e 
o

f 
p

ee
r 

se
t

Time

All Connections

Inbound Connections

Outbound Connections

(a) 100-rollingstone2

 0

 10

 20

 30

 40

 50

 60

 70

 80

08:00 12:00 16:00 20:00 00:00 04:00 08:00

S
iz

e 
o

f 
p

ee
r 

se
t

Time

All Connections

Inbound Connections

Outbound Connections

(b) 500-rollingstone2

Fig. 1. Peer set size over time (100-rollingstone and 500-rollingstone)

Connection Lifetime (minutes)

F
re

q
u
en

cy

0
2
0
0

4
0
0

6
0
0

8
0
0

0 10 20 30

(a) 100-random3

Connection Lifetime (minutes)

F
re

q
u
en

cy

0
2
0
0

4
0
0

6
0
0

8
0
0

0 10 20 30

(b) 100-rollingstone3

Fig. 2. Connection lifetimes histograms (100-random and 100-rollingstone)

lifetimes for the 100-random and 100-rollingstone playlists (all
the replicas show similar shapes, so we show representative
examples). In these plots we use one-minute bins, and observe
that two peaks are present in both plots. The first peak shows
that many connections are opened and closed within a minute
(as we discuss later, many of these last for less than one
second). The second peak is around five to six minutes; we
note that this is around the length of a song, and suggest that
connection duration is correlated to track length.

Figure 3 shows the complementary CDF of the connection
lifetimes, drawn on log-log scale. As in other studies of peer-
to-peer behaviour [4], [5], [7], we find the shapes to be con-
sistent with a long-tailed distribution of connection lifetimes,

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

C
C

D
F

 o
f 

C
o

n
n

ec
ti

o
n

 L
if

et
im

es

Lifetime (minutes)

100-random1

100-random2

100-random3

100-rollingstone1

100-rollingstone2

100-rollingstone3

500-rollingstone1

500-rollingstone2

500-rollingstone3

Fig. 3. Log-log complimentary CDF of connection lifetimes

with the lifetime distributions showing a roughly straight line
on log-log axes. Figure 3 shows a difference between the 500-
rollingstone playlist (which shows a clear straight line along
the body of the distribution, a feature commonly attributed
to power-laws) and the other playlists. These results show
that for the 500-rollingstone playlist (during which the client
spends more time in the “fetching-content” state, as discussed
in Section IV-A), connection lifetimes are typically shorter,
indicating higher churn in the client’s peer set.

C. TCP activity

We examine the TCP activity over short periods of time,
to better understand when connections are created and how
long they last, and in particular, to understand why so many
connections last around five minutes. Figure 4 shows a 60-
minute snapshot of the activity in one of our replicas (again,
we observe similar behaviour in the other traces, and show a
representative example). Each point represents TCP activity,
and each line on the y-axis represents a different connection.
We observe bursts of activity every few minutes, with new
connections being formed, some lasting for quite short periods,
and others lasting longer. These bursts of new connections are
reasonably evenly spaced, around every five minutes, roughly
coinciding with the length of songs. Therefore, we believe
that each of these bursts of activity is associated with our
client approaching the end of the current track, and making
new connections to gather the next track, as described in
[6]. We speculate that once the client obtains a list of peers
which have the next track in its playlist, it opens multiple
connections to these peers. When the track is obtained, the
other connections are closed, resulting in the short connections
visible in Figure 4. These short connections are also visible
in the box highlighted in Figure 5, which shows the length of
connections and the volume of data transferred. Connections
with very short lifetimes (∼1 second or less) tend to transfer
very little data (less than 1kB), implying they are not used to
transfer tracks. Note that Figure 5 does not include connections
which transfer no data before being closed, such as the “two-
way” connections described in Section IV-A.

We note that this bursty connection-forming behaviour is
present on all the playlists. This is slightly unexpected since



 0

 50

 100

 150

 200

 250

 300

 350

08:10 08:15 08:20 08:25 08:30 08:35 08:40 08:45 08:50 08:55 09:00 09:05

P
ee

r 
N

u
m

b
er

Time

TCP Activity across a 60 minute snapshot

Fig. 4. TCP activity over 60-minute snapshot (100-random3)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.0001  0.001  0.01  0.1  1  10  100  1000

D
a
ta

 T
ra

n
sf

e
rr

e
d

 (
K

B
)

Connection Duration (minutes)

Inbound Data

Fig. 5. Connection duration / data transferred (100-random1, inbound)

we expected that playing the rollingstone playlists would intro-
duce us to peers with similar musical preferences (improving
the chance our existing peers would have the next track in the
playlist). If these results are reflective of all Spotify clients,
this suggests that the existing set of peers consistently fails to
provide requested tracks. Since this connection behaviour is
predictable, it also provides a mechanism to classify network
connections as being Spotify peer-to-peer traffic.

Further work will focus on trying to discover whether some
playlists (e.g., with tracks classified as Spotify’s most popular)
change this behaviour, and gather most data from the existing
peer set rather than forming new connections.

V. RELATED WORK

The operation of the Spotify protocol, and a server-side
perspective of the peer-to-peer network behaviour is described
in [6]. In contrast, we study Spotify from the perspective of an
individual peer participating in the network, connected to the
Internet using a typical home setup (using a commodity NAT
and ADSL line). Similar studies have looked at other peer-to-
peer systems and protocols, including Skype [2], [8], and peer-
to-peer video streaming systems [5], [7]. Like these studies,
we observe long-tailed behaviour in lifetimes of connections,
as illustrated in Figure 3. However, some important differences
are present. Since Spotify deals with non-interactive content
(unlike Skype), it has a less stringent requirement for low
latency connections between peers, and can cope with situ-

ations when tracks cannot be located from the peer network.
Similarly, since Spotify transfers relatively small music tracks,
rather than streaming video (as in P2PTV systems), it can
transfer data in bursts, as shown in Figure 4.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the first client-side mea-
surements of Spotify’s peering behaviour. We show that
connection-forming behaviour is quite different between when
the client is fetching content, and when it is playing only from
its local cache, with differences in the rate of new connections,
and the connection lifetimes. We note in particular that when
new tracks are being downloaded, the rate of new connections
is quite bursty. We believe that these bursts of activity represent
the client downloading the next track in the playlist, and that
connections to many peers are opened in parallel, to improve
the likelihood obtaining the track. The predictable bursts of
new connections we observe when the client is fetching tracks
could provide a technique to identify Spotify traffic.

These results highlight a number of avenues for future
work. Firstly, repeating these experiments with a larger number
of clients will allow us to validate the preliminary findings
outlined here. Additionally, further experiments using clients
located on different types of network (such as academic
or mobile networks) would produce interesting comparisons,
since the different network capacity and stability is likely to
affect the peering behaviour. Since our playlists may not have
introduced the musical locality of preference we expected,
future work should choose these more carefully, possibly by
playing from entire albums, or by using Spotify’s list of most
popular tracks. This should allow us to determine whether
playing popular content reduces connection churn.

Overall, we show a client-side perspective of how the
Spotify protocol operates, and discuss interesting features of
our data. This work, and the future work described above, can
be used to improve the performance of the Spotify protocol,
and other protocols for hybrid peer-to-peer distribution.

ACKNOWLEDGEMENTS

This work was supported by Cisco Research and the UK
EPSRC. Thanks to Tristan Henderson and Saleem Bhatti for
suggestions and comments on earlier drafts of this paper.

REFERENCES

[1] “The 500 Greatest Songs of All Time,” Rolling Stone, no. 963, 2004.
[2] S. A. Baset and H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer

Internet Telephony Protocol,” in Proc. IEEE INFOCOM, 2006.
[3] M. Goldmann and G. Kreitz, “Measurements on the Spotify Peer-Assisted

Music-on-Demand Streaming System,” in Proc. IEEE P2P, 2011.
[4] S. Guha, N. Daswani, and R. Jain, “An Experimental Study of the Skype

Peer-to-Peer VoIP System,” in Proc. IPTPS, 2006.
[5] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measurement

Study of a Large-Scale P2P IPTV System,” IEEE Transactions on
Multimedia, vol. 9, no. 8, 2007.

[6] G. Kreitz and F. Niemelä, “Spotify - Large Scale, Low Latency, P2P
Music-on-Demand Streaming,” in Proc. IEEE P2P, 2010.

[7] T. Silverston and O. Fourmaux, “Measuring P2P IPTV Systems,” in Proc.
ACM NOSSDAV, 2007.

[8] K. Suh, D. R. Figueiredo, J. Kurose, and D. Towsley, “Characterizing
and detecting relayed traffic: A case study using Skype,” in Proc. IEEE
INFOCOM, 2006.


