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Abstract—User-perceived quality-of-experience (QoE) in in-
ternet telephony systems is commonly evaluated using subjective
ratings computed as a Mean Opinion Score (MOS). In such
systems, while user MOS can be tracked on an ongoing basis,
it does not give insight into which factors of a call induced any
perceived degradation in QoE – it does not tell us what caused
a user to have a sub-optimal experience. For effective planning
of product improvements, we are interested in understanding the
impact of each of these degrading factors, allowing the estimation
of the return (i.e., the improvement in user QoE) for a given
investment. To obtain such insights, we advocate the use of an
end-of-call “problem token questionnaire” (PTQ) which probes
the user about common call quality issues (e.g., distorted audio
or frozen video) which they may have experienced. In this paper,
we show the efficacy of this questionnaire using data gathered
from over 700,000 end-of-call surveys gathered from Skype (a
large commercial VoIP application). We present a method to
rank call quality and reliability issues and address the challenge
of isolating independent factors impacting the QoE. Finally, we
present representative examples of how these problem tokens have
proven to be useful in practice.
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I. INTRODUCTION

The quality of experience (QoE) of VoIP and video-based
communication services is commonly reported in terms of
the Mean Opinion Score (or MOS) [1], [2]. A MOS value
represents an average of subjective quality scores reported by
end users and ranges from 1 to 5 – with 1 being the worst
quality and 5 being perfect quality. While MOS ratings are
useful in evaluating overall system quality, detailed ground
truth on the specific quality degradations experienced by the
user is often hard to obtain. Therefore, in addition to prompting
for the opinion score, our application presents the user with a
set of follow-up options to indicate the existence of commonly
experienced quality degradation which may have occurred
during the call. We refer to these additional options as problem
tokens. The details of the call quality feedback dialog (CQF)
used to gather the opinion score, and the problem token
questionnaire (PTQ) for audio and video calls is shown in
Figure 1. Note that we do not present the PTQ if the user
gives an opinion score of 5 – indicating a perfect experience
with “no problems”.

The PTQ is a rich source of data that provides us with
insights into the areas where the user felt that their QoE
was degraded. In addition to providing us information about
the system quality, it also allows us to collect ground truth
for improving the performance of various components. For

Fig. 1. The top panel shows the Skype call quality feedback (CQF) dialog
shown at the end of a call. The CQF dialog allows a user to provide an overall
subjective rating. The bottom panel shows the problem token questionnaire
(PTQ) if the user gives an imperfect subjective rating.

example, it is extremely challenging to detect if the user
experienced any “echo” artifacts during the call using technical
statistics. If the system was able to reliably detect echo using
technical metrics, algorithms for echo cancellation would be
applied to minimize echo artifacts. Not surprisingly, users are
more likely to fill out the PTQ for calls with ratings of 1 or
2 (herein poor calls) compared to calls rated three or more
(herein good calls); this bias in response rate is discussed
further in Section IV. The share of poor calls expressed as



a percentage of the total count of calls is referred to as the
poor call rate (PCR). In this paper, we will use PCR as
the metric of choice, however the methods we present can be
applied to any other VoIP quality metric, average call duration
(ACD) being one example.

In this paper, we focus on how we use the data gathered
from the PTQ to gain actionable insights. In the course of
analysis of PTQ data, we have obtained several results that we
feel are useful to the community. Our main contributions are
as follows:

1) We show that problem tokens are highly informative
in explaining poor experiences. Problem tokens result
in a 73% reduction in entropy (information gain) of
the poor call label.

2) We present a method to estimate the impact to quality
metrics and rank of impediments as measured by
problem tokens. Note that this rank significantly
differs from the rank of the overall token frequencies.

3) We improve the estimate of PCR impact on token
areas by identifying factors that are relatively orthog-
onal using the correlation structure in the reported
tokens.

4) We present practical applications of using problem
tokens in decision making.

The rest of the paper is organized as follows: Section
II provides a review of the related work. In Section III,
we provide details of the data used for the analysis and
results. Section IV presents the main contributions of our work,
outlining our analysis methods and the results of said analysis.
Based on our experience, Section V discusses some practical
and real-world applications of using problem tokens. In Section
VI, we summarize and outline possible future work.

II. RELATED WORK

In VoIP applications, it is common practice to correlate
subjective experience ratings with telemetry gathered from
the various back-end system components for evaluation. Jiang
et al. [3] studied the correlation and prevalence of poor
networking conditions (network jitter, packet loss, etc.) on
PCR. Pessemier et al. [4] combined subjective quality ratings
with technical metrics using a decision tree to understand the
technical features that best explain the subjective ratings. Their
study found that user-perceived quality decreases as users get
more familiar with the system while the average call duration
increases over a period of 120 days. The analysis in this paper
differs from the work of Pessemier et al. in the following ways:
First, we correlate subjective ratings with problem data gath-
ered from user feedback (as opposed to technical metrics), and
second, the goal of our study is to breakdown quality metrics in
terms of the rank and impact to the metric from the perspective
of the user. The decision tree approach is highly suited for
troubleshooting but it does not provide a breakdown of the
top-level metric into its components in an uncorrelated manner.
Moller et al. [5] outline a taxonomy structure, definitions of
factors and their relationships to characterize the quality of
experience. They advocate a questionnaire framework [6] for
evaluating interaction quality of experience.

There is a body of work addressing the topic of subjective
quality assessment. Methods for measuring subjective audio

and video quality have been defined within ITU-T Rec. P.800
[2] and P.910 [7], and work continues within ITU-T’s Study
Group 12 to standardize new methods for objective quality
assessment [8]. These methods include techniques for objective
measurement of audio and video quality from technical factors,
such as the ITU E-model [9], as well as full-reference metrics
such as POLQA. These methods are generally intended for
offline use, and therefore are of limited value in evaluating
live systems. Weiss et al. [10] evaluated different approaches
to predicting the overall subjective quality of speech using the
quality of individual segments of calls. They found that most
models (Weiss [10], Rosenbluth [11] and ETSI models [12])
outperformed simple averaging of MOS.

User studies have been used for decades to gather human
feedback on audio/video quality for the purposes of perfor-
mance evaluation. Traditionally, this has involved in-lab studies
with a small number of participants, but more recently online
crowdsourcing platforms (e.g., Amazon Mechanical Turk) have
allowed sampling of wider population of users. This has been
used for QoE evaluation in still image and audio/video sce-
narios [13], [14], [15]. By using crowdsourcing, it is possible
to quickly obtain a very large number of evaluation samples,
although there is additional variance in such experiments due
to the lack of control compared with an in-lab study.

A number of data analysis techniques have been used to
estimate the impact of predictors. The ideas outlined in [16]
provide a good overview of the approaches used to estimate
the importance of correlated predictors.

III. DATASET

The data and results reported in this paper were obtained
from end-of-call surveys collected during real-world calls
made using Skype. The details of the dataset are as follows:
• Calls were sampled uniformly at random from users

during a two week period.
• Calls were one-to-one, rather than group or conference

calls, and included both audio-only and video calls.
• 700,000 unique calls from in excess of 100,000 unique

users.

If a user rates a call less than 5 on the CQF dialog then
the PTQ is shown; however, since submission is optional,
some ratings do not have corresponding problem tokens. The
representative dataset has a significantly higher percentage of
calls that are labeled good calls. For some results, we will re-
sample the data at random such that the distribution of class
labels (poor vs. good) is balanced. This secondary dataset is
referred to as the balanced dataset. Unless otherwise specified,
we will report results on the representative dataset. At this
point, we would like to draw attention to our approach in
presenting results in the rest of the paper. Since Skype is a
commercial application, we are unable to provide absolute
numbers of the quality metrics. However, we will provide
relative ranks (scaled) to convey the relevant information.

IV. ANALYSIS & RESULTS

A. Informativeness of Problem Tokens

The percentage of the problem token selection for all rated
calls and calls with poor ratings is shown in Figure 2. The
following observations can be made based on the figure:
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Video stopped unexpectedly
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All Ratings
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Fig. 2. Problem token response rates for all rated calls and poor calls1.

• Users are significantly more likely to respond to PTQ
when the call is rated as poor compared to when the
call is rated as good. For example, the response rate
for “I could not hear any sound” token is about three
times higher for poor calls compared to the overall
rated population.

• The response rate sort order is different for overall
rated calls and poor calls. This indicates that some
problem areas are more likely to result in a poor call
compared to others.

While it is clear that users are more likely to respond to
the PTQ questionnaire when they have a poor experience, the
response rate (user selecting any token) is about 54% among
the poor call population, which can dilute some of the results.
In order to mitigate this bias, from here onwards our analysis
considers only poor calls where the token feedback is provided.
Note that we resample the data such that the original PCR is
preserved.

Computing information gain [17] is another approach to
measuring the information content present in the problem
tokens. The information gain of two uncorrelated variables is
0. At the other extreme, the maximum value of information
gain is 1; in other words, it represents the reduction in
uncertainty achieved in one variable when we know the value
of the other variable. We compute the information gain on the
balanced dataset between the poor call indicator variable and
any token reported indicator variable – a Boolean vector
set to 1 if a user selected any problem token; else 0. The
information gain for the dataset was found to be 0.73. Since
this is computed on a balanced set, the information gain also
represents the fractional reduction in entropy for the poor call
label if we know any token reported.

1To preserve commercial confidentiality, absolute values are hidden in
figures throughout the paper.

Algorithm 1 TIMU – Token impact on metric univariate
1: procedure TIMU(df, problem set,metric, fix value)
2: df fix← COPY(df)
3: df fix[problem set,metric]← fix value
4: metric original← MEAN(df [metric])
5: metric fix← MEAN(df fix[metric])
6: mean impact← ABS(metric original−metric fix)

7: . Use propogation of errors to estimate ...
8: . uncertainty of the impact of the metric
9: metric var ← VAR(df [metric])

10: metric fix var ← VAR(df fix[metric])
11: metric fix cov ← COVARIANCE((df [metric], df fix[metric]))
12: combined std←

√
metric var + metric fix var −metric fix cov

13: combined se← combined std√
df.rows

14: mean impact 95 ci← 1.96 ∗ combined se

15: return mean impact,mean impact 95 ci

B. Impact of Problem Areas on Metrics

The token frequencies (Figure 2) provide us with a ranking
for prioritizing product improvement areas. It is worth noting
that the response rate of tokens is quite different for all rated
calls versus poor calls. For example, the percentage of users
reporting “I could not hear any sound” is lower than those
reporting “I heard noise in the call” for all calls. While the
former represents a catastrophic situation where users cannot
proceed with completing the desired task, the latter might be
an annoyance but would not prevent completion of the desired
task. This is the intuition behind why we see a higher rank for
the token “I could not hear any sound” compared to “I heard
noise in the call” when only considering poor calls.

The above intuition points to the fact that the impact to the
PCR metric for each problem token is related non-linearly
with the overall token frequencies. Therefore, the ranking
provided by the impact to the metric is a more natural way
to prioritize product improvements than considering raw token
frequencies.

In order to map the token frequencies to the impact on
quality metrics, we use two approaches. The first approach
relies on two assumptions:
• Independence: A problem token is set independently

of other problem tokens.
• Mutual exclusion: Users selecting a particular token

would not have had a poor experience if they had not
encountered this impediment.

This approach is referred to as the token impact on metric
univariate (TIMU). The TIMU method is suitable for ranking
impairments. The second solution, token impact on metric
multivariate (TIMM), addresses the independence and mutual
exclusion assumptions. TIMM provides a logical grouping of
problem areas, and an estimate of the impact of those areas
in terms of the quality metric. We advocate using TIMU and
TIMM in conjunction – while TIMM identifies groups and
provides an estimate of the impact between groups, TIMU
allows us to rank areas within those groups. Next, we will go
into the details of the two approaches.

C. TIMU Approach

The TIMU approach is outlined in Algorithm 1. The idea
is to estimate the impact of problem tokens on a quality metric
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Fig. 3. Estimated impact of problem tokens on PCR and ACD using TIMU.

in a univariate fashion (i.e., without considering the correlation
among tokens). The procedure accepts the following argu-
ments: the dataset, set of problem calls, name of the metric,
and a value for the quality metric that would reflect a good
experience – for PCR, we pick a value of 0 indicating that
call would not have been rated as poor. For ACD, we pick
the average of the call duration for calls where no problem is
reported. The idea is to apply the “fix value” on the problem
set. The difference in the original metric and the fixed metric
is the impact of the problem set on a given metric. Lines 8-
14 show the computation of the uncertainty of the estimate
using propagation of error technique [17], [18]. This is done by
combining the estimate of the variance of the original metric,
the fixed metric, and the covariance among the two.

The outcome of applying the TIMU approach for PCR
and ACD is shown in Figure 3. It is interesting to note that
the rank of the problem areas is different for PCR and ACD.
The media reliability metrics (“I could not hear any sound”,
“Call ended unexpectedly”, “I could not see any video”) have
the highest impact for ACD. A number of quality areas such
as “unnatural or distorted speech” and “freezing video” have
more impact on PCR then on ACD. We have found this
approach to be very useful to rank areas that need improvement
(or investment). One shortcoming that needs to be mentioned
here is that the impact on the metric is overestimated due to
the correlation and mutual exclusion assumptions. However,
the results can be used to estimate the rank of the problem
areas. This shortcoming is addressed by the TIMM approach.

Before proceeding to the TIMM approach, we further mo-
tivate the need to improve on the TIMU approach by looking
at the correlation of the problem tokens. We use the Jaccard
similarity score [19] to measure the degree of overlap between
the tokens. Perfect overlap between two Boolean vectors
results in a Jaccard similarity score of 1, whereas no overlap
leads to a Jaccard similarity score of 0. The token correlations
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Fig. 4. Jaccard similarity scores for problem tokens (diagonals set to zero).

Algorithm 2 TIMM – Token impact on metric multivariate
1: procedure TIMM(df,metric, loading threshold)
2: Clean Data:
3: . Remove uninformative variables from df to avoid singularity

4: Estimate PCorr:
5: . Estimate polychoric correlation matrix from cleaned problem token matrix

6: Tune NumLatentFactors:
7: . Use Parallel Analysis on PCorr to fix the number of latent factors

8: Estimate Dimension Loadings:
9: . Suppress weak loadings to zero using loading threshold

10: . Generate new dimensions from the factor loading of dominant contribution

11: Build Predictive Model for metric Using Estimated Dimensions:
12: . Fit generalized linear model (GLM)
13: . metricNoChange← Predict metric value for mean dimension values

14: Estimate Impact on Metric:
15: for each dim ∈ Dimension do
16: . metricChange← Predict metric when the dim is reduced
17: . Use metricChange and metricNoChange to estimate the im-

provement in metric

are shown in Figure 4. Note that the diagonal elements have
been made zero as those would always represent 1. We see
very strong correlations among the tokens. For example, when
users complain about “echo”, more than 40% of the time
they also complain about experiencing “noise” in the call. In
34% of cases, “video stopped unexpectedly” complaints are
accompanied by “poor video quality” complaints. While it is
our goal to make these tokens as unambiguous as possible
during the design phase of these tokens (out of scope of this
paper), it is clear that users perceive quality problems as a
collection of problem groups rather than a single problem.
Therefore, we need an approach that computes the impact to
PCR by considering these correlations.

D. TIMM Approach

The TIMM approach is based on projecting the observed
data into a lower dimensional space of meaningful factors
and carrying on the estimation of impact on metrics in the
lower dimensional space. This is achieved through Exploratory
Factor Analysis (EFA) [20], [21] and Generalized Linear



TABLE I. FACTORS EXTRACTED FROM PROBLEM TOKENS

Problem Groups Problem Tokens
(%Variance explained)
Audio Quality (26%) We kept interrupting each other

Speech was not natural or sounded distorted
Volume was low
I heard echo in the call
I heard noise in the call

Video Quality (25%) The other side was too dark
Video stopped unexpectedly
Video was ahead or behind audio
Image quality is poor
Video kept freezing

One-way Video (12%) I could not see any video
The other side could not see my video

One-way Audio (11%) I could not see any sound
The other side could not see my sound

Reliability (7%) The call ended unexpectedly

Model (GLM) techniques [22]. We skip the details of EFA
and GLM methodology and instead briefly discuss the key
characteristics that make these standard frameworks work so
well for problem token data. Since the problem tokens are
ratings that indicate users’ satisfaction (i.e., the token is set
to 1 if problem is encountered and 0 if not encountered),
these tokens can be modeled as dichotomous observations
of a continuous trait, say “satisfaction level”. If satisfaction
level dips lower than a certain threshold, the user rates 1,
otherwise 0. This way, the observed variable is binomial while
the latent variable is continuous. The correlation structure
between latent continuous variables is estimated from binary
observations using the Polychoric correlation coefficient [23],
[24]. We compared EFA on Polychoric correlation to Prin-
cipal Components Analysis (PCA) on Pearson correlation. In
addition to the theoretical incompetence of Pearson correlation
coefficient for binomial data, this approach does not preserve
class separability (i.e., separation between good and poor
calls), nor provided interpretable results. An overview of the
TIMM procedure is provided in Algorithm 2.

The Polychoric correlation coefficient proved to be highly
effective in revealing meaningful groupings of problem tokens
through EFA (with varimax rotation [21]). A 5-dimensional
subspace of rotated factors with dominant loadings accounts
for 81% of total variability in the 15-dimensional space of
problem tokens. These factors are not orthogonal as in PCA
[20], but provide a reasonable trade-off between interpretability
and dimensionality reduction. The weak remaining correlation
between factors is captured in the GLM model through interac-
tion effect terms. By dropping the tokens with small loading
from each factor (we used a threshold of 0.5), the problem
groups (PGs) shown in Table I are uncovered.

Logistic regression is used to predict the reduction in PCR
by fixing each of the problem groups shown in Table I. The
most accurate model consists of all the main effect terms (the
PGs) and two interaction effect terms; specifically between
two pairs of PGs: Audio Quality (PG1) and Video Quality
(PG2), and Audio Quality (PG1) and One-way Audio (PG4).
In practical terms, this means that when PG1 and PG2 (and
similarly PG1 and PG4) are reported together, they have an
impact different to the sum of their individual contributions.
The Area Under Curve (AUC) using this approach is 95%;
this is a significant improvement over the baseline approach of

Relative

Reliability

One-way Video

Video Quality

Audio Quality

One-way Audio

PCR Drop

Cumulative PCR Drop

Fig. 5. Predicted maximum relative reduction in PCR using TIMM.

using any token reported. The baseline method has a false
positive rate (FPR) of 10.8% and a true positive rate (TPR) of
48%. At the same FPR, the logistic regression model has a TPR
of 93% resulting in a significant improvement in performance.

Figure 5 shows the maximum reduction that can be
achieved by fixing a single PG at a time. The blue bars indicate
the reduction in PCR if a single PG is fixed while all other
PGs still occur at their current level. In the population we
studied, the data indicates that fixing One-way Audio has the
highest return on investment (RoI) while Reliability shows the
smallest RoI in terms of user satisfaction. This provides the
priority in problem groups and helps formulate efforts to fix
them within our study population. Note that the values shown
in blue are not additive since they represent the drop in PCR
assuming only one problem group is fixed. However, the inter-
action terms in the model help to predict the combined effect.
Yellow bars in Figure 5 demonstrate the expected cumulative
drop in PCR. It is worth mentioning that we see TIMU and
TIMM methods providing complementary information. While
TIMM provides an estimate of RoI in fixing problem groups,
TIMU provides a relative ranking withing the problem group.

V. DISCUSSION

In our experience, problem tokens have served as a useful
source of data in solving many practical decision making
challenges. Here, we outline some representative examples.

A. Analysis of quality for new releases/versions

When new versions of Skype are released, engineering
teams are keen to track the user-perceived QoE. This is usually
done by comparing the quality metrics of the new release to
previous releases; typically, regressions in quality attract more
attention than improvements. Upon discovering that a quality
metric has regressed, the natural response is to ask which
changes in the product have caused this regression. However,
this is not always an easy question to answer. A typical release
contains a number of changes that can interact with each
other in complex ways. These changes may not be detected
in component, integration or end-to-end regression tests, but
once released may interact under certain hardware or network
conditions previously unknown – resulting in poor experiences
for potentially millions of users. On numerous occasions, we



have used the problem token data as a first response to reduce
the search space of the quality regression. For example, one
release contained a change to bandwidth allocation logic, a
corner case resulted in a sharp uptick in PCR and the response
rate of the “I could not hear any sound” token. This allowed
us to narrow down the underlying problem resulting in a faster
turnaround time for the fix.

B. Unbiased comparisons when updating system components

Problem token data has been useful in evaluating the user
experience when making systemic changes in components. The
problem in evaluating systemic changes is that the technical
metrics are often not comparable between the two systems. For
example, when making a major overhaul in the jitter control
component, we were unable to use the technical metrics to
compare the two systems, since the definitions of the metrics
themselves had changed. However, the associated problem
tokens (“We kept interrupting each other”, “Speech was not
natural or sounded distorted”) are based on user feedback, and
can therefore be used to compare the two components.

VI. SUMMARY

In this paper, we analyze the value of the end-of-call
“problem token questionnaire” in Skype calls. Using a dataset
collected from over 700, 000 calls, we show that problem
tokens give useful insights in understanding the areas where
our users perceive a quality degradation. We show that instead
of relying on the raw token frequencies of problem tokens,
these data can be used more effectively by estimating the
impact on quality metrics. Towards this goal, two approaches
are presented with the requirement that results are easy to
interpret and take action on.

The TIMU method is used to rank the problem areas that
are impacting quality metrics experienced by users. The TIMM
method exploits the correlation structure of the problem tokens
to learn categories, and estimates of impact to the quality
metrics within those categories. The goal of these two methods
is to provide the next level of detail by breaking down a quality
metric, this is then primarily used to estimate areas that require
improvement. We also share some practical examples of how
problem tokens can be employed by engineering teams for
effective decision-making in situations where technical metrics
are not easily available.

We note that the design of the PTQ (as with any question-
naire) is a key factor for the effectiveness and response rate of
these tokens. Techniques for effective design include keeping
the question set small, using clear and unambiguous text, and
randomizing presentation order to minimize priming bias [25].
However, we defer discussion of these issues to future work.

To conclude, we would like to emphasize that understand-
ing the overall impact of the problem tokens provides us with
a very natural way to measure user-perceived QoE, and has
allowed us to make investments to improve it.
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