
Performance Analysis of AL-FEC for RTP-based
Streaming Video Traffic to Residential Users

Martin Ellis
School of Computing Science

University of Glasgow
Email: ellis@dcs.gla.ac.uk

Dimitrios P. Pezaros
School of Computing Science

University of Glasgow
Email: dp@dcs.gla.ac.uk

Colin Perkins
School of Computing Science

University of Glasgow
Email: csp@csperkins.org

Abstract—Real-time applications used by residential cus-
tomers, such as streaming video and IPTV, are sensitive to packet
losses, whether due to IP-layer congestion, or link-layer problems
such as bit errors induced by impulse noise. To achieve acceptable
user experience for these applications, numerous application-
layer forward error correction (AL-FEC) schemes have been
proposed. We evaluate some of the FEC schemes developed as
part of the OpenFEC project, using packet loss traces of IPTV-
like traffic measured on ADSL and Cable links. We consider
the effectiveness of these schemes in correcting the loss patterns
present on residential links, explain why performance is different
using measured loss traces compared with previous simulations
using uniform random packet loss, and give recommendations
for the use of FEC in streaming video applications deployed to
residential Internet users.

I. INTRODUCTION

Forward error correction (FEC) is a well-known technique
to protect real-time traffic against the effects of packet loss.
In IP-based streaming video and IPTV applications, FEC is
generally deployed at the application level, adding redun-
dant packets to the media stream to repair loss. To improve
transmission efficiency, and to reduce the risk of introducing
congestion by increasing the overall data rate, it is desirable
to minimise the FEC overhead, while maintaining adequate
protection. Finding the correct balance can be difficult, and
requires insight into the network conditions.

With ongoing deployment of streaming video and IPTV to
residential Internet users, it is becoming more important to
understand how to tune FEC to suit such services. In particular,
we need to determine how the loss patterns of ADSL and
cable access links differ from more widely studied backbone
network links, and measure their effect on FEC performance.

In this paper, we compare the performance of three
application-layer FEC schemes implemented in the Open-
FEC project (http://openfec.org), when applied to RTP-based
streaming video. The FEC schemes are 2D parity codes
(2D) [1], Reed-Solomon erasure codes (RSE) [2], and LDPC-
Staircase codes (LDPC) [3]. We use packet loss measurements
from video streams sent from a well-connected server to
residential users [4] to inform trace-driven simulations of FEC
performance, studying residual packet loss rates and fraction
of lost packets successfully recovered. Our contributions are
1) a simulation-based evaluation of AL-FEC performance on
real networks, using traces of unmanaged Internet streaming

to residential users (i.e., reflecting the conditions that inter-
domain IPTV flows could experience if they were deployed
in future; 2) an explanation of the differences between our
results and those of previous evaluations of these schemes
under random packet loss (particularly the effect of bursty
packet loss); and 3) guidelines for use of FEC, to recommend
which FEC schemes and parameters work well under the loss
conditions common on residential networks.

Previous work has examined FEC performance in analytical
studies, or using data from well-provisioned networks; to the
best of our knowledge, ours is the first to consider FEC
performance for streaming traffic sent to residential ADSL and
Cable users using real-world network performance data.

The remainder of this paper is structured as follows. We
outline related work in §II, describe the FEC schemes in §III,
and explain our approach in §IV. §V presents results, and §VI
discusses our recommendations. We conclude in §VII.

II. RELATED WORK

The OpenFEC codes we examine were studied under uni-
form random packet loss by Matsuzono et al. [5]. In [5], a
lab-scale experiment was set up, with a sender and receiver
running a DV (Digital Video) application transmitting data
over RTP/UDP/IP [6]. The video streams were protected using
2D parity codes [1], RSE codes [2], and LDPC-Staircase
codes [3], and their performance was evaluated under uniform
random loss from 0–51%. The study evaluated recovery capa-
bilities, latency introduced, and CPU cost incurred by each of
the FEC schemes, concluding that LDPC codes with a source
block size of k = 170 give the best trade-off between recovery
performance, latency, and CPU load. However, this does not
tell us about FEC performance under real-world packet loss
conditions, which is what we show in the present paper.

A previous study looking at FEC performance on DSL
networks was conducted by Begen [7]; this compares the
performance of 1D interleaved parity codes against Raptor
codes [8]. Begen uses typical DSL noise models to drive
simulations of loss patterns, while we evaluate performance
using measured loss traces. Similarly, models of packet loss
were used in a DVB study [9] to evaluate the performance of
1D parity and Raptor codes, describing the relative strengths
and weaknesses of both schemes. Luby et al. [10] discuss
AL-FEC for IPTV, including a discussion of different FEC

schemes, and the “layered” approach using 1D parity and
Raptor codes, discussed in [9]. Mammi et al. [11] investigated
SMPTE 1D and 2D parity FEC schemes [1], using a testbed
setup and models of random i.i.d. and repetitive electrical
impulse noise (REIN). Kang & Loguinov [12] analytically
studied the effect of packet loss on FEC for video streaming,
using models for packet loss, but did not consider any Internet
loss measurements. FEC performance for video on optical
backbone networks was studied in [13], finding that a suitable
trade-off between repair performance and latency can be hard
to achieve. Older work examined performance of FEC for
packet audio over the academic backbones [14], [15], using
measured traces and performance models.

We focus on FEC performance using measured data from
residential broadband networks, since streaming video systems
are often accessed by home users. The characteristics of the
packet loss on these networks has been found to be quite
different from uniform random loss [4], so we expect FEC
performance to be different too. Since previous work has not
looked at FEC performance using data from streaming to
residential broadband networks, this is where we focus.

III. FEC FOR STREAMING VIDEO

In this section, we describe the FEC schemes in the Open-
FEC framework. Each of these schemes has been considered
by the IETF FECFrame working group for use in protecting
media streams, and has received interest from both academia
and industry. We discuss the operation of the schemes, con-
sider their overhead and latency, and describe how we compare
their performance using measured loss traces, in contrast to
previous evaluation under random loss conditions [5].

2D parity codes work by arranging the k source packets into
a grid of D rows and L columns, and adding repair packets
for each row and column. Therefore, a total of D + L repair
packets are added. If at most one packet is lost in a row or
column, then the remaining packets are used to recover the
loss. SMPTE 2022-1 [1] is a widely deployed example. This
scheme is simple, but has a limited capacity for recovery, since
it is only resilient to up to L consecutive losses (i.e., is able to
recover from loss bursts up to length L, provided that no other
packets were lost within the grid). As there are constraints on
the latency that a real-time system can tolerate, the D and L
parameters cannot grow too large. In OpenFEC, the 2D codes
use square grids (with D = L), and limit k to be ≤ 16.

RFC 5510 [2] defines RSE codes for use in real-time stream-
ing. Reed-Solomon codes are maximum separable distance
codes, meaning that of the n encoding symbols sent (including
k source symbols and n − k repair symbols), any k can be
used for recovery. The computational cost of the mathematical
operations (using Galois Fields) increases rapidly with the size
of those fields, introducing a practical limitation on the block
sizes that can be used. Due to these limitations, we will look
only at RSE codes over GF(28) (as in [5]).

A third FEC scheme, LDPC-Staircase codes (defined in
RFC 5170 [3]), is suitable for use with large block sizes with
relatively low computational complexity. Similar to Raptor

codes [8], LDPC-Staircase codes require more than k symbols
to be received to allow recovery for every k symbols sent (i.e.,
these are not maximum separable distance codes). However,
in practice, the fraction of extra symbols required can be quite
low when using an appropriate decoding algorithm ([5] states
that (k×1.05) is appropriate, based on experimental evidence).

IV. METHODOLOGY

The OpenFEC framework provides implementations of the
FEC algorithms under study, as well as a performance evalua-
tion tool, eperftool. This tool evaluates the FEC schemes on a
single machine, simulating the transmission and reception of
packets, and is configurable with a number of transmission
schemes (determining the order of transmitted source and
repair packets) and loss modes (determining which packets
arrive at the receiver).

We use the dataset described in [4], which contains end-
to-end measurements of streaming synthetic IPTV-like traffic
across the open Internet at a range of bit-rates (1–8.5Mb/s)
to residential ADSL and Cable users. The dataset consists
of over 3800 traces, varying between one and ten minutes
in duration (between 6000 and 120000 packets per trace).
For more details of the measurements, and information on
where to obtain the trace data, please see [4]. In these traces,
sequence numbers indicate the ordering of packets, allowing
packet loss to be calculated. We process each trace to generate
a binary loss sequence, then use these sequences to evaluate
the performance of the FEC schemes.

To evaluate the FEC schemes using loss traces, eperftool
was modified, as follows. We added a new loss mode to read
a given loss trace and use the loss patterns within the trace to
decide whether packets will be received or lost. We also added
a new transmission mode (which determines in which order
the packets are sent), to support the source and FEC packets
for each block being sent together, rather than using the
default sending arrangement which sends all source packets
(for all blocks) first, then all repair packets. This modification
is necessary to prevent large delays when recovering lost
packets. Finally, modifications have been made to profile the
FEC decoding process, to enable fine-grained reporting of
packet loss and repair. To this end, the number of source
and repair packets received within each block are recorded, to
allow calculation of per-block and overall packet loss statistics.
When decoding of a block fails, the number of source packets
received (and lost) determine the residual loss rate. A further
metric of interest in FEC is the delay incurred by waiting for
FEC packets to recover lost packets; to capture this, we added
profiling code to record the distance between lost packets and
the repair packets which recover them. The modifications to
eperftool are available at http://martin-ellis.net/research/fec.

A. FEC Parameters

To begin, we apply the same parameters as [5]; 2D with
source block size k = 16, RSE with k = 170, LDPC with
k = 170, k = 500, and k = 1000, and code rate of 2

3 , (i.e.,
50% overhead). This allows us to re-run the experiments of

[5] to validate our setup, and to compare FEC performance
using real-world loss traces against simulated random loss.

We specify the total number of source (Tk) and repair (Tr)
packets that will be used for each simulation. When re-running
the experiments of [5], we choose Tk = 10000 and Tr = 5000
to achieve a code rate of 2

3 , with a reasonable number of blocks
for each of the FEC schemes being tested. For the loss traces,
the choice of Tk and Tr is determined by the trace length,
with 2

3 of the trace being allocated to the source packets, and
the remainder to the repair packets. So, for a trace of length
T , Tk =

⌊
T × 2

3

⌋
, and Tr =

⌊
T × 1

3

⌋
. For 2D FEC, there are

further limitations, such that Tk must be a multiple of 16 (the
largest 2D block size supported in OpenFEC), and Tr is Tk/2.

B. Performance Metrics

In [5], three metrics are used to evaluate performance;
residual (post-repair) loss rate, frame delay, and CPU usage.
Since we use eperftool rather than a separate sender and
receiver, we will look at residual loss rate and delay due to
FEC. Measuring CPU usage is not so important, since our
goal is not to measure the complexity of the algorithms, but
rather to observe how their repair performance is affected by
measured loss data from residential networks, and since FEC
decoding cost is small relative to the cost of decoding video.

To calculate the delay due to FEC, we count the number
of packets received between the time when the lost packet
would have been received, and the receipt of the packet that
repairs the loss. This is more appropriate than the wall-clock
time measured for delay in [5], since it makes no assumptions
about sending rates, and is not tied to the particular processor
or load of the machine doing the calculations. Although delay
in terms of packets does not consider the FEC decoding delay,
in practice we expect this to be small compared to the packet
arrival delay, especially given the low packet sending rates
available on residential networks.

Further work could extend the evaluation to directly mea-
sure video quality by decoding a video sequence with the
post-repair loss patterns, and report video metrics such as
PSNR. In this paper, we focus on the FEC performance, since
evaluating video quality depends not only on loss patterns,
but also on the encoding method and type of content, whereas
FEC performance provides a more general metric.

V. OPENFEC PERFORMANCE

We begin by evaluating the FEC schemes with simulated
random loss, as in [5], then present results of applying the
same FEC schemes, with the same parameters, to the measured
loss traces, and discuss why the performance differs, and the
impact this has on real-world streaming video traffic.

A. Applying FEC under random loss

Figure 1a shows the input packet loss probability against
residual (post-repair) packet loss rate (the diagonal represents
loss rate with no FEC). This shows that for low loss (up
to ∼10%), all the schemes perform well, repairing almost
all loss. Above 10%, 2D parity FEC starts to show poorer

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50R
es

id
u

al
 L

o
ss

 R
at

e
(%

)

Input Packet Loss Probability (%)

2D (k=16)

RSE (k=170)

LDPC (k=170)

LDPC (k=500)

LDPC (k=1000)

(a) Loss probability vs. residual packet loss rate

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50

D
el

ay
 (

p
ac

k
et

s)

Input Packet Loss Probability (%)

2D (k=16)

RSE (k=170)

LDPC (k=170)

LDPC (k=500)

LDPC (k=1000)

(b) Loss probability vs. mean FEC delay

Fig. 1. FEC performance under simulated random loss

performance, showing steadily higher residual loss rates as the
input loss probability increases. Up to ∼30% loss, the other
FEC schemes continue to perform well. However, above 30%,
they show a sharp degradation in performance, with residual
loss rates climbing sharply, eventually matching the input
loss probability after 35%. Beyond 35% loss, 2D FEC gives
slightly lower residual loss rates (since the small block sizes
mean that some blocks will be repaired); however, residual
loss rates of above 30% will produce unusable video. These
results are comparable with those in [5], which also showed
the early decline in 2D parity FEC performance, and the “cliff”
in performance for the other schemes.

Figure 1b shows the mean FEC recovery delay (in packets).
At low loss rates, delays are low (but related to the block size),
since most packets are received normally (i.e., with delay 0).
As loss rate increases, the delays increase, with more packets
in need of repair, up to the threshold point discussed earlier
and seen in Figure 1a. After this point, since fewer packets are
actually recovered, the average delay due to FEC decreases.

The results presented in Figure 1b are independent of the
packet transmission rate. Therefore, they are comparable with,
but do not directly replicate, those in [5], which assume a
particular transmission rate and include CPU processing time
for the FEC. Section VI discusses the impact of sending rate.

B. Applying FEC to loss traces

Figure 2a shows results of applying the FEC schemes to
the loss traces from [4]. Since most of the traces show quite
low loss rates, we limit the scale to focus on the 0–25% range.
Observe that unlike the random loss results (where all the FEC
schemes except 2D parity show almost full recovery under
25% loss), there are traces in this range where not all loss
is recovered. Table I gives the percentage of traces, for each
FEC scheme, which have 0% residual loss. Note that having

 0

 10

 20

 30

2D (k=16)

 0

 10

 20

 30

RSE (k=170)

 0

 10

 20

 30

R
e
si

d
u

a
l

L
o

ss
 R

a
te

 (
%

)

LDPC (k=170)

 0

 10

 20

 30

LDPC (k=500)

 0

 10

 20

 30

0 5 10 15 20 25

Trace Loss Rate (%)

LDPC (k=1000)

(a) Trace loss rate vs. residual packet loss rate

 0

 20

 40

 60

2D (k=16)

 0

 20

 40

 60

RSE (k=170)

 0

 20

 40

 60

M
ea

n
 D

el
ay

 (
p

ac
k

et
s)

LDPC (k=170)

 0

 20

 40

 60

LDPC (k=500)

 0

 20

 40

 60

0 5 10 15 20 25

Trace Loss Rate (%)

LDPC (k=1000)

(b) Trace loss rate vs. mean FEC delay

Fig. 2. FEC performance on measured trace data

such a high percentage of low loss traces is not unusual for a
well-engineered network. However, those traces which show
significant loss are common enough to have a severe effect
on user experience. A common target for IPTV services is
to have no more than one visible artefact per two hours (or
fewer). This corresponds to packet loss of ∼10−6 [7].

FEC Scheme Num traces Percentage
2D (k = 16) 3264 85.69%

RSE (k = 170) 3728 97.87%
LDPC (k = 170) 3724 97.77%
LDPC (k = 500) 3780 99.24%

LDPC (k = 1000) 3789 99.47%

TABLE I
NUMBER OF TRACES WITH 0% RESIDUAL LOSS RATE

FEC Delay (packets)

0.01 0.1 1 10 100 1000

10−5

10−4

10−3

10−2

10−1

100

F
ra

ct
io

n
 o

f
re

p
ai

re
d

p
ac

k
et

s
w

it
h
 d

el
ay

≤
x

2D (k=16)

RSE (k=170)

LDPC (k=170)

LDPC (k=500)

LDPC (k=1000)

Fig. 3. CDFs of FEC delays from loss traces

It is clear that 2D FEC has the poorest recovery perfor-
mance, as in [5], since it has the lowest fraction of traces being
fully repaired (see Table I). This lower fraction produces the
higher points in the top panel of Figure 2a; some of these are
clustered near to the diagonal, showing that the performance
is little better than it would be without FEC.

The RSE and LDPC schemes perform equally well for
k = 170. Performance improves using LDPC codes with larger
block sizes (larger k). However, unlike the random loss results
seen in the previous experiments, there are cases of low loss
(less than 10%) where the losses in the trace data cannot be
recovered, resulting in residual loss rates above zero. These
traces contain loss patterns which overwhelm the capacity of
FEC to recover within certain blocks (e.g., large loss bursts).
This result reminds us that the relationship between packet loss
and FEC performance is not straightforward. It is also worth
noting that there are cases where none of the FEC schemes are
able to repair the loss (even with a large FEC overhead); in
such cases, retransmission-based recovery will be necessary.

Figure 2b shows trace loss vs. per-trace mean FEC delay,
as discussed in Section IV-B. We see a similar shape for all
schemes, with the overall trend showing higher delays with
higher trace loss rates (since more packets need to be repaired).
Moreover, mean delay increases with block size; the maximum
per-trace mean delay is ∼1 packet for 2D (k = 16), ∼10
packets for RSE and LDPC with k = 170, and between 50
and 100 packets for LDPC with k = 500 and k = 1000.

Mean delay, while useful, does not tell the whole story,
since video quality depends not on the average delay, but on
how often packets exceed their deadline and cause visible
distortions to playback. Figure 3 shows the cumulative dis-
tribution of per-packet delays for repaired packets under each
FEC scheme. The 2D scheme shows the lowest delays, with
no packets delayed more than 24 packets. The RSE and LDPC

schemes with k = 170 show higher delays, although less than
2% (RSE) and 4% (LDPC) are more than 200 packets (i.e.,
correlated with block size). The larger block LDPC schemes
show similar worst case delays up to their block sizes (500
and 1000 packets); such large FEC delays make these schemes
less attractive for real-time use, despite their better recovery
performance, since increased delay results in higher channel
change times, degrading user experience. Note however, that
these results reflect the worst case, and that over 99.98% of
packets are not delayed by FEC (for any scheme). These
results highlight the trade-off between optimising recovery
performance (larger blocks), and minimising worse-case FEC
delay (block size ≈ worst-case delay).

C. Understanding performance differences

Comparing the results between random loss (Section V-A)
and the measured loss traces (Section V-B), it’s clear that
performance is different. While most of the loss traces show
loss rates less than 10%, FEC performance on the traces does
not match that of random loss below 10%. The difference is
due to the loss patterns in the traces, which exhibit bursty
rather than uniform random loss, as described in [4].

However, the length of packet loss bursts is not the only
factor affecting FEC performance. Indeed, looking at the mean
loss burst lengths (which have been used to analyse FEC
performance [16]) does not explain the results in the traces,
since some of the traces with poorest performance have short
mean burst lengths, as shown in Figure 4a. The reason for this
is that there are periods where many packets are lost in short
bursts next to short bursts of received packets; while the loss
bursts are short, the overall loss patterns are highly bursty.

To measure this effect we calculate a different metric, which
splits the traces into windows, and counts the number of lost
packets and distinct loss bursts in each window. For each trace,
we count the number of windows where there are either more
than N lost packets or more than M loss bursts (the count for
N lost packets is so that windows containing long loss bursts
are also counted), and obtain the fraction of the trace that is
bursty by dividing this count by the total number of windows.

We choose a window size of 16 packets, since this corre-
sponds to the smallest of the k values we are considering. Also,
if the packets are being transmitted at 500 packets per second
(as we will discuss in Section VI), the 16 packet window
equates to 32ms, which is roughly equal to one frame of video
playback at 29.97fps (1/29.97 ≈ 33.33ms). We choose N = 4
packets, since the 99th percentile of all loss burst lengths in
the loss traces is 4, suggesting that loss bursts longer than this
are unusual. We choose M = 4 packets, since 4 loss bursts
in a window of 16 suggests loss is reaching the point where
repair is ineffective (as seen in Figure 1a).

Figure 4b shows the results of plotting this window-based
burstiness metric, for 2D FEC. We also compute the cor-
relation between the burstiness and the residual loss rate;
the strong correlation (0.9904) indicates this metric is more
suitable than the mean burst length (which has a correlation of
0.0199). This window-based burstiness metric performs better

l

l

l

l

l

l

l

l l

l
l

l

l

l
l l

l

l

ll
l

ll l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l
l

l

l

ll

l

l

ll

l
l

l

l

l

l
l

l

l

l

ll

l
l

l

l

l
l

l

l

ll

l
l

l

l

l

l

l

l

l

l

ll

l

l
l

ll l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l
ll

l

l
l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l l

l
l

l

ll

l l

l

l
l

ll

l

l

l

l
ll

l

l

l
l

l

l
l

l

l
l l

l
l

lll

l

ll l

l

l

l
l

l
l

l
l l

l l

l

l

l
l

l
ll l

ll

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l
l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l
l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l l

l

ll
l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

ll
l

l

l
l

l
l

l

l

l

l

ll

l
l
l

l

l

l
l

ll

l

l
ll

l

l
l

l

l

l

l

lll l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l
l l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

R
es

id
u

al
 L

o
ss

 (
%

)

1 10 100

10−3

10−2

10−1

100

101

102

Mean loss burst length (packets)

l

l

l

l

l

l

l

l l

l
l

l

l

l
l l

l

l

ll
l

ll l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l
l

l

l

ll

l

l

ll

l
l

l

l

l

l
l

l

l

l

ll

l
l

l

l

l
l

l

l

ll

l
l

l

l

l

l

l

l

l

l

ll

l

l
l

ll l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l
ll

l

l
l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l l

l
l

l

ll

l l

l

l
l

ll

l

l

l

l
ll

l

l

l
l

l

l
l

l

l
l l

l
l

lll

l

ll l

l

l

l
l

l
l

l
l l

l l

l

l

l
l

l
ll l

ll

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l
l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l
l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l l

l

ll
l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

ll
l

l

l
l

l
l

l

l

l

l

ll

l
l
l

l

l

l
l

ll

l

l
ll

l

l
l

l

l

l

l

lll l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l
l l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

Correlation : 0.0199

(2D)

(a) Mean loss burst length vs. residual loss rate (2D FEC)

l

l
l

l

l

l

l l

l
l

l

l

l
ll

l

l

l

lll

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l
l

l

l

l l

l

l

l l

l
l

l

l

l

l
l

l

l

l

l l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l
l

l ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l
l l

l

l
l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l l

l
l
l

l l

ll

l

l
l

ll

l

l

l

l
ll
l

l

l
l

l

l
l

l

l
l l

l
l

ll l

l

lll

l

l

l
l

l
l

l
ll

ll

l

l

l
l

l
lll

l l

l l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l
l
l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l
l

l

l

l
l

l

l
l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l l

l

ll

l

l

l
l

l

l

l
l

l

l
l

ll

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

ll

l l

l l
l

l
l

l

l
l

l

l
l

l

l
l

l

l

ll
l

l

l
l

l
l

l

l

l

l

ll

l
l

l

l

l

l
l

l l

l

l
ll

l

l
l

l

l

l

l

l l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l l

l
l l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

R
es

id
u

al
 L

o
ss

 (
%

)

10−4 10−3 10−2 10−1 100

10−3

10−2

10−1

100

101

102

Burstiness (fraction of windows exceeding threshold)

l

l
l

l

l

l

l l

l
l

l

l

l
ll

l

l

l

lll

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l
l

l

l

l l

l

l

l l

l
l

l

l

l

l
l

l

l

l

l l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

ll

l

l
l

l ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l
l l

l

l
l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l l

l
l
l

l l

ll

l

l
l

ll

l

l

l

l
ll
l

l

l
l

l

l
l

l

l
l l

l
l

ll l

l

lll

l

l

l
l

l
l

l
ll

ll

l

l

l
l

l
lll

l l

l l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l
l
l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l
l

l

l

l
l

l

l
l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l l

l

ll

l

l

l
l

l

l

l
l

l

l
l

ll

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

ll

l l

l l
l

l
l

l

l
l

l

l
l

l

l
l

l

l

ll
l

l

l
l

l
l

l

l

l

l

ll

l
l

l

l

l

l
l

l l

l

l
ll

l

l
l

l

l

l

l

l l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l l

l
l l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

Correlation : 0.9904

(2D)

(b) Trace burstiness (windows) vs. residual loss rate (2D FEC)

l

l

l

l

l

l

l

ll

l
l

l

l

l
l l

l

l

l l
l

l ll

l
l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l
l

l

l

l l

l

l

l l

l
l

l

l

l

l
l

l

l

l

l l

l
l

l

l

l
l

l

l

l l

l
l

l

l

l

l

l

l

l

l

ll

l

l
l

l ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l
l l

l

l
l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
ll

l
l
l

ll

ll

l

l
l

ll

l

l

l

l
ll
l

l

l
l

l

l
l

l

l
l l

l
l

lll

l

lll

l

l

l
l

l
l

l
ll

ll

l

l

l
l

l
l ll

l l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

ll

l

l
l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l
l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

ll

l

ll
l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l l
l

l

l
l

l
l

l

l

l

l

l l

l
l

l

l

l

l
l

l l

l

l
ll

l

l
l

l

l

l

l

ll ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l
l l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

R
e
si

d
u

a
l

L
o

ss
 (

%
)

10−4 10−3 10−2 10−1 100

10−3

10−2

10−1

100

101

102

Fraction of trace within bursts (RFC 3611)

l

l

l

l

l

l

l

ll

l
l

l

l

l
l l

l

l

l l
l

l ll

l
l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l
l

l

l

l l

l

l

l l

l
l

l

l

l

l
l

l

l

l

l l

l
l

l

l

l
l

l

l

l l

l
l

l

l

l

l

l

l

l

l

ll

l

l
l

l ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l
l l

l

l
l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
ll

l
l
l

ll

ll

l

l
l

ll

l

l

l

l
ll
l

l

l
l

l

l
l

l

l
l l

l
l

lll

l

lll

l

l

l
l

l
l

l
ll

ll

l

l

l
l

l
l ll

l l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

l

l

ll

l

l
l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l
l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

ll

l

ll
l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l l
l

l

l
l

l
l

l

l

l

l

l l

l
l

l

l

l

l
l

l l

l

l
ll

l

l
l

l

l

l

l

ll ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l
l l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

Correlation : 0.8292

(2D)

(c) Trace burstiness (RFC 3611) vs. residual loss rate (2D FEC)

Fig. 4. Correlating FEC performance with bursts

than the burst loss metric of RFC 3611 [17] (Figure 4c),
which identifies bursts as periods starting and ending with a
loss and containing no receive runs above a threshold length
Gmin (we use the recommended value of 16). The poorer
performance is probably due to the RFC 3611 metric being
too sensitive, and describing a whole period as bursty, even if
FEC recovery might be possible. Our window-based metric is
more accurate since it considers how much loss is tolerable.
Adjusting the threshold length Gmin used in the RFC 3611
metric can achieve better performance, but the correlation with
FEC performance is only stronger than our window-based
metric when Gmin is ≤ 3, at which point the RFC 3611 metric
does not distinguish between “good and poor quality periods”,
as was the aim in [17]. The values in Figure 4 are for the
residual loss rates after 2D FEC; correlations are similar for
the other schemes, but are not shown due to space limitations.

VI. RECOMMENDATIONS

To recommend which of these schemes is most appropriate
for use on residential networks, we look at their ability to
recover from losses, and the delay they introduce. So far, we
have considered the FEC delay in terms of the number of
packets sent in the stream between packets being lost and
being recovered. However, by considering the sending rate

of these packets, we can calculate the delays introduced by
the FEC in terms of time. If we consider rates of 5Mb/s,
which can be received by the typical residential broadband
user ([18] found that average home downstream bandwidth
was 6.2Mb/s), and 1316-byte RTP packets carrying MPEG
video, we get a packet rate of 500 packets per second (pps).
Using this rate, we can estimate the latency of the FEC. To
achieve the overall 430ms latency bound suggested in [19],
a constraint of 200ms for the FEC latency seems appropriate,
allowing time for other components of channel-change latency.

Looking at the results, we see that both the RSE and LDPC
schemes with k = 170 show better recovery performance than
2D FEC, although with higher delays. Figure 3 shows the
fraction of repaired packets exceeding the 200ms limit for
FEC delay (100 packets at 500pps) is 50% for RSE, and 60%
for LDPC (k = 170), although only 0.075% (RSE) and 0.09%
(LDPC) of all packets exceed the threshold. For a threshold
closer to the FEC block size (e.g., 200 packets), only 1.5%
(RSE) and 4% (LDPC) of repaired packets would exceed it.

We re-simulated the performance of LDPC with smaller
block sizes, to reduce the worst-case delay and measure the
effect on recovery performance. The parameters were (k = 67,
r = 33) and (k = 80, r = 20), with 50% and 25% overhead,
respectively (since many traces have low loss rates, we also
look at the effect of reducing FEC overhead). Although space
limitations prevent a full analysis of these results in this paper,
we find that the percentage of traces fully repaired is 95.59%
with (k = 67, r = 33), and 92.02% with (k = 80, r = 20),
compared with > 97% for the schemes in Table I. Therefore,
tuning is necessary to choose the trade-off between desired
worst-case delay, overhead, and repair performance.

Considering the higher CPU overhead for the RSE scheme
recorded in [5], we agree with the conclusions of [5] that
LDPC codes are the most suitable choice among the schemes
compared. However, we find that the suggested block size of
k = 170 is too high for use with a delay bound of 200ms at
5Mb/s, and recommend instead that the LDPC block size is
tuned so that the worst-case FEC delay does not exceed the
delay bound. It should also be noted that none of the FEC
schemes recover all lost packets when the loss is too high.
In such cases, it is necessary to use retransmission alongside
FEC to recover loss, although doing so will add one round-trip
time of latency, to account for the retransmission request. Note
that infrastructure to support retransmission is likely already
present in the system, to support rapid channel-change [20].

VII. CONCLUSIONS

In this paper, we have evaluated the performance of three
AL-FEC schemes; 2D, RSE, and LDPC-Staircase codes, under
loss conditions measured for IPTV-like traffic on residential
broadband networks. We have shown that since the measured
loss is bursty, the FEC performance doesn’t simply follow
the input loss rate as suggested in [5], but is also affected
by the loss burstiness. Looking at burstiness, we have also
demonstrated that the mean burst length is not sufficient
to predict FEC performance, since it does not consider the

periods of short, clustered loss bursts. We have presented a
metric which better correlates with residual loss rate than the
burst loss metric presented in [17].

We have found that LDPC-Staircase codes give the best
trade-off between recovery, latency and computational cost (a
finding consistent with that of [5]), although the worst-case
delays incurred when k = 170 are too high to be used for
Internet streaming. However, we show that smaller block sizes
can be used without harming recovery performance too much.
Since there are periods of loss that are unrecoverable using
FEC (even with high levels of overhead), we recommend that
retransmission-based recovery is also used.

Future work will focus on further exploring the trade-
off between overhead, latency, and repair performance for
LDPC codes, and evaluate the FEC schemes in real-time video
streaming to residential users. This work might also evaluate
video quality for specific encoding schemes and content, to
better understand the effect of ADSL/Cable packet loss on
user experience for streaming video.

Acknowledgements
This work was supported by Cisco Research and EPSRC.

REFERENCES

[1] SMPTE, “FEC for Real-Time Video/Audio Transport Over IP Net-
works,” SMPTE 2022-1, 2007.

[2] J. Lacan et al., “Reed-Solomon Forward Error Correction (FEC)
Schemes,” IETF, 2009, RFC 5510.

[3] V. Roca et al., “Low Density Parity Check Codes (LDPC) Staircase and
Triangle FEC Schemes,” IETF, 2008, RFC 5170.

[4] M. Ellis et al., “End-to-End and Network-Internal Measurements of
Real-Time Traffic to Residential Users,” in Proc. ACM MMSys, 2011.

[5] K. Matsuzono et al., “Performance Analysis of a High-Performance
Real-Time Application with Several AL-FEC Schemes,” in Proc. IEEE
LCN, 2010.

[6] H. Schulzrinne et al., “RTP: A Transport Protocol for Real-Time
Applications,” IETF, 2003, RFC 3550.

[7] A. C. Begen, “Error Control for IPTV over xDSL Networks,” in Proc.
IEEE CCNC, 2008.

[8] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
2006.

[9] “DVB Application Layer FEC Evaluations,” DVB Document A115 -
TM 3783, 2007.

[10] M. Luby et al., “Application layer FEC in IPTV services,” IEEE
Commun. Mag., vol. 46, no. 5, 2008.

[11] E. Mammi et al., “Evaluation of AL-FEC performance for IP television
services QoS,” in Proc. SPIE, 2010.

[12] S.-R. Kang and D. Loguinov, “Modeling Best-Effort and FEC Streaming
of Scalable Video in Lossy Network Channels,” IEEE/ACM Trans. Netw.,
vol. 15, no. 1, 2007.

[13] S. Naegele-Jackson et al., “Multi-layer Performance Measurements over
Optical Testbeds and QoS Provisioning for High-Bandwidth Video
Applications,” in Proc. BROADNETS, 2006.

[14] J.-C. Bolot et al., “Analysis of Audio Packet Loss in the Internet,” in
Proc. NOSSDAV, 1995.

[15] C. Perkins et al., “A survey of packet loss recovery techniques for
streaming media,” IEEE Network, vol. 12, no. 5, 1998.

[16] P. Frossard, “FEC Performance in Multimedia Streaming,” IEEE Com-
mun. Lett., vol. 5, no. 3, 2001.

[17] T. Friedman et al., “RTP Control Protocol Extended Reports (RTCP
XR),” IETF, 2003, RFC 3611.

[18] C. Kreibich et al., “Netalyzr: Illuminating The Edge Network,” in Proc.
ACM IMC, 2010.

[19] R. Kooij et al., “Perceived Quality of Channel Zapping,” in Proc.
IASTED CSN, 2006.

[20] B. Ver Steeg et al., “Unicast-Based Rapid Acquisition of Multicast RTP
Sessions,” IETF, 2011, RFC 6285.

